Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Piyush B. Gupta is active.

Publication


Featured researches published by Piyush B. Gupta.


Cell | 2005

Stromal Fibroblasts Present in Invasive Human Breast Carcinomas Promote Tumor Growth and Angiogenesis through Elevated SDF-1/CXCL12 Secretion

Akira Orimo; Piyush B. Gupta; Dennis C. Sgroi; Fernando Arenzana-Seisdedos; Thierry Delaunay; Rizwan Naeem; Vincent J. Carey; Andrea L. Richardson; Robert A. Weinberg

Fibroblasts often constitute the majority of the stromal cells within a breast carcinoma, yet the functional contributions of these cells to tumorigenesis are poorly understood. Using a coimplantation tumor xenograft model, we demonstrate that carcinoma-associated fibroblasts (CAFs) extracted from human breast carcinomas promote the growth of admixed breast carcinoma cells significantly more than do normal mammary fibroblasts derived from the same patients. The CAFs, which exhibit the traits of myofibroblasts, play a central role in promoting the growth of tumor cells through their ability to secrete stromal cell-derived factor 1 (SDF-1); CAFs promote angiogenesis by recruiting endothelial progenitor cells (EPCs) into carcinomas, an effect mediated in part by SDF-1. CAF-secreted SDF-1 also stimulates tumor growth directly, acting through the cognate receptor, CXCR4, which is expressed by carcinoma cells. Our findings indicate that fibroblasts within invasive breast carcinomas contribute to tumor promotion in large part through the secretion of SDF-1.


Cell | 2009

Identification of Selective Inhibitors of Cancer Stem Cells by High-Throughput Screening

Piyush B. Gupta; Tamer T. Onder; Guozhi Jiang; Kai Tao; Charlotte Kuperwasser; Robert A. Weinberg; Eric S. Lander

Screens for agents that specifically kill epithelial cancer stem cells (CSCs) have not been possible due to the rarity of these cells within tumor cell populations and their relative instability in culture. We describe here an approach to screening for agents with epithelial CSC-specific toxicity. We implemented this method in a chemical screen and discovered compounds showing selective toxicity for breast CSCs. One compound, salinomycin, reduces the proportion of CSCs by >100-fold relative to paclitaxel, a commonly used breast cancer chemotherapeutic drug. Treatment of mice with salinomycin inhibits mammary tumor growth in vivo and induces increased epithelial differentiation of tumor cells. In addition, global gene expression analyses show that salinomycin treatment results in the loss of expression of breast CSC genes previously identified by analyses of breast tissues isolated directly from patients. This study demonstrates the ability to identify agents with specific toxicity for epithelial CSCs.


Cancer Research | 2008

Loss of E-cadherin promotes metastasis via multiple downstream transcriptional pathways.

Tamer T. Onder; Piyush B. Gupta; Sendurai A. Mani; Jing Yang; Eric S. Lander; Robert A. Weinberg

Loss of the epithelial adhesion molecule E-cadherin is thought to enable metastasis by disrupting intercellular contacts-an early step in metastatic dissemination. To further investigate the molecular basis of this notion, we use two methods to inhibit E-cadherin function that distinguish between E-cadherins cell-cell adhesion and intracellular signaling functions. Whereas the disruption of cell-cell contacts alone does not enable metastasis, the loss of E-cadherin protein does, through induction of an epithelial-to-mesenchymal transition, invasiveness, and anoikis resistance. We find the E-cadherin binding partner beta-catenin to be necessary, but not sufficient, for induction of these phenotypes. In addition, gene expression analysis shows that E-cadherin loss results in the induction of multiple transcription factors, at least one of which, Twist, is necessary for E-cadherin loss-induced metastasis. These findings indicate that E-cadherin loss in tumors contributes to metastatic dissemination by inducing wide-ranging transcriptional and functional changes.


Nature | 2009

Systematic RNA interference reveals that oncogenic KRAS -driven cancers require TBK1

David A. Barbie; Pablo Tamayo; Jesse S. Boehm; So Young Kim; Susan E. Moody; Ian F. Dunn; Anna C. Schinzel; Peter Sandy; Etienne Meylan; Claudia Scholl; Stefan Fröhling; Edmond M. Chan; Martin L. Sos; Kathrin Michel; Craig H. Mermel; Serena J. Silver; Barbara A. Weir; Jan H. Reiling; Qing Sheng; Piyush B. Gupta; Raymond C. Wadlow; Hanh Le; Ben S. Wittner; Sridhar Ramaswamy; David M. Livingston; David M. Sabatini; Matthew Meyerson; Roman K. Thomas; Eric S. Lander; Jill P. Mesirov

The proto-oncogene KRAS is mutated in a wide array of human cancers, most of which are aggressive and respond poorly to standard therapies. Although the identification of specific oncogenes has led to the development of clinically effective, molecularly targeted therapies in some cases, KRAS has remained refractory to this approach. A complementary strategy for targeting KRAS is to identify gene products that, when inhibited, result in cell death only in the presence of an oncogenic allele. Here we have used systematic RNA interference to detect synthetic lethal partners of oncogenic KRAS and found that the non-canonical IκB kinase TBK1 was selectively essential in cells that contain mutant KRAS. Suppression of TBK1 induced apoptosis specifically in human cancer cell lines that depend on oncogenic KRAS expression. In these cells, TBK1 activated NF-κB anti-apoptotic signals involving c-Rel and BCL-XL (also known as BCL2L1) that were essential for survival, providing mechanistic insights into this synthetic lethal interaction. These observations indicate that TBK1 and NF-κB signalling are essential in KRAS mutant tumours, and establish a general approach for the rational identification of co-dependent pathways in cancer.


Nature Medicine | 2009

CANCER STEM CELLS: MIRAGE OR REALITY?

Piyush B. Gupta; Christine L. Chaffer; Robert A. Weinberg

The similarities and differences between normal tissue stem cells and cancer stem cells (CSCs) have been the source of much contention, with some recent studies calling into question the very existence of CSCs. An examination of the literature indicates, however, that the CSC model rests on firm experimental foundations and that differences in the observed frequencies of CSCs within tumors reflect the various cancer types and hosts used to assay these cells. Studies of stem cells and the differentiation program termed the epithelial-mesenchymal transition (EMT) point to the possible existence of plasticity between stem cells and their more differentiated derivatives. If present, such plasticity would have major implications for the CSC model and for future therapeutic approaches.


Proceedings of the National Academy of Sciences of the United States of America | 2010

Core epithelial-to-mesenchymal transition interactome gene-expression signature is associated with claudin-low and metaplastic breast cancer subtypes

Joseph H. Taube; Jason I. Herschkowitz; Kakajan Komurov; Alicia Y. Zhou; Supriya Gupta; Jing Yang; Kimberly A. Hartwell; Tamer T. Onder; Piyush B. Gupta; Kurt W. Evans; Brett G. Hollier; Prahlad T. Ram; Eric S. Lander; Jeffrey M. Rosen; Robert A. Weinberg; Sendurai A. Mani

The epithelial-to-mesenchymal transition (EMT) produces cancer cells that are invasive, migratory, and exhibit stem cell characteristics, hallmarks of cells that have the potential to generate metastases. Inducers of the EMT include several transcription factors (TFs), such as Goosecoid, Snail, and Twist, as well as the secreted TGF-β1. Each of these factors is capable, on its own, of inducing an EMT in the human mammary epithelial (HMLE) cell line. However, the interactions between these regulators are poorly understood. Overexpression of each of the above EMT inducers up-regulates a subset of other EMT-inducing TFs, with Twist, Zeb1, Zeb2, TGF-β1, and FOXC2 being commonly induced. Up-regulation of Slug and FOXC2 by either Snail or Twist does not depend on TGF-β1 signaling. Gene expression signatures (GESs) derived by overexpressing EMT-inducing TFs reveal that the Twist GES and Snail GES are the most similar, although the Goosecoid GES is the least similar to the others. An EMT core signature was derived from the changes in gene expression shared by up-regulation of Gsc, Snail, Twist, and TGF-β1 and by down-regulation of E-cadherin, loss of which can also trigger an EMT in certain cell types. The EMT core signature associates closely with the claudin-low and metaplastic breast cancer subtypes and correlates negatively with pathological complete response. Additionally, the expression level of FOXC1, another EMT inducer, correlates strongly with poor survival of breast cancer patients.


Nature | 2012

Chromatin Modifying Enzymes as Modulators of Reprogramming

Tamer T. Onder; Nergis Kara; Anne Cherry; Amit U. Sinha; Nan Zhu; Kathrin M. Bernt; Patrick Cahan; B. Ogan Mancarci; Juli Unternaehrer; Piyush B. Gupta; Eric S. Lander; Scott A. Armstrong; George Q. Daley

Generation of induced pluripotent stem cells (iPSCs) by somatic cell reprogramming involves global epigenetic remodelling. Whereas several proteins are known to regulate chromatin marks associated with the distinct epigenetic states of cells before and after reprogramming, the role of specific chromatin-modifying enzymes in reprogramming remains to be determined. To address how chromatin-modifying proteins influence reprogramming, we used short hairpin RNAs (shRNAs) to target genes in DNA and histone methylation pathways, and identified positive and negative modulators of iPSC generation. Whereas inhibition of the core components of the polycomb repressive complex 1 and 2, including the histone 3 lysine 27 methyltransferase EZH2, reduced reprogramming efficiency, suppression of SUV39H1, YY1 and DOT1L enhanced reprogramming. Specifically, inhibition of the H3K79 histone methyltransferase DOT1L by shRNA or a small molecule accelerated reprogramming, significantly increased the yield of iPSC colonies, and substituted for KLF4 and c-Myc (also known as MYC). Inhibition of DOT1L early in the reprogramming process is associated with a marked increase in two alternative factors, NANOG and LIN28, which play essential functional roles in the enhancement of reprogramming. Genome-wide analysis of H3K79me2 distribution revealed that fibroblast-specific genes associated with the epithelial to mesenchymal transition lose H3K79me2 in the initial phases of reprogramming. DOT1L inhibition facilitates the loss of this mark from genes that are fated to be repressed in the pluripotent state. These findings implicate specific chromatin-modifying enzymes as barriers to or facilitators of reprogramming, and demonstrate how modulation of chromatin-modifying enzymes can be exploited to more efficiently generate iPSCs with fewer exogenous transcription factors.


Cancer Cell | 2009

AKT-independent signaling downstream of oncogenic PIK3CA mutations in human cancer

Krishna Vasudevan; David A. Barbie; Michael A. Davies; Rosalia Rabinovsky; Chontelle McNear; Jessica Kim; Bryan T. Hennessy; Hsiuyi Tseng; Panisa Pochanard; So Young Kim; Ian F. Dunn; Anna C. Schinzel; Peter Sandy; Qing Sheng; Piyush B. Gupta; Jesse S. Boehm; Jan H. Reiling; Serena J. Silver; Yiling Lu; Katherine Stemke-Hale; Bhaskar Dutta; Corwin Joy; Aysegul A. Sahin; Ana M. Gonzalez-Angulo; Ana Lluch; Lucia E. Rameh; Tyler Jacks; David E. Root; Eric S. Lander; Gordon B. Mills

Dysregulation of the phosphatidylinositol 3-kinase (PI3K) signaling pathway occurs frequently in human cancer. PTEN tumor suppressor or PIK3CA oncogene mutations both direct PI3K-dependent tumorigenesis largely through activation of the AKT/PKB kinase. However, here we show through phosphoprotein profiling and functional genomic studies that many PIK3CA mutant cancer cell lines and human breast tumors exhibit only minimal AKT activation and a diminished reliance on AKT for anchorage-independent growth. Instead, these cells retain robust PDK1 activation and membrane localization and exhibit dependency on the PDK1 substrate SGK3. SGK3 undergoes PI3K- and PDK1-dependent activation in PIK3CA mutant cancer cells. Thus, PI3K may promote cancer through both AKT-dependent and AKT-independent mechanisms. Knowledge of differential PI3K/PDK1 signaling could inform rational therapeutics in cancers harboring PIK3CA mutations.


Nature Genetics | 2005

The melanocyte differentiation program predisposes to metastasis after neoplastic transformation.

Piyush B. Gupta; Charlotte Kuperwasser; Jean Philippe Brunet; Sridhar Ramaswamy; Wen Lin Kuo; Joe W. Gray; Stephen P. Naber; Robert A. Weinberg

The aggressive clinical behavior of melanoma suggests that the developmental origins of melanocytes in the neural crest might be relevant to their metastatic propensity. Here we show that primary human melanocytes, transformed using a specific set of introduced genes, form melanomas that frequently metastasize to multiple secondary sites, whereas human fibroblasts and epithelial cells transformed using an identical set of genes generate primary tumors that rarely do so. Notably, these melanomas have a metastasis spectrum similar to that observed in humans with melanoma. These observations indicate that part of the metastatic proclivity of melanoma is attributable to lineage-specific factors expressed in melanocytes and not in other cell types analyzed. Analysis of microarray data from human nevi shows that the expression pattern of Slug, a master regulator of neural crest cell specification and migration, correlates with those of other genes that are important for neural crest cell migrations during development. Moreover, Slug is required for the metastasis of the transformed melanoma cells. These findings indicate that melanocyte-specific factors present before neoplastic transformation can have a pivotal role in governing melanoma progression.


Current Opinion in Cell Biology | 2000

Genes involved in senescence and immortalization

Ante S. Lundberg; William C. Hahn; Piyush B. Gupta; Robert A. Weinberg

Senescence is now understood to be the final phenotypic state adopted by a cell in response to several distinct cell physiological processes, including proliferation, oncogene activation and oxygen free radical toxicity. The role of telomere maintenance in immortalization and the roles of p16(INK4A), p19(ARF), p53 and other genes in senescence are being further elucidated. Significant progress continues to be made in our understanding of cellular senescence and immortalization.

Collaboration


Dive into the Piyush B. Gupta's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Yuxiong Feng

Massachusetts Institute of Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Ethan S. Sokol

Massachusetts Institute of Technology

View shared research outputs
Researchain Logo
Decentralizing Knowledge