Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Piyush Jha is active.

Publication


Featured researches published by Piyush Jha.


Solid State Phenomena | 2014

Luminescence of II-VI Semiconductor Nanoparticles

B.P. Chandra; V.K. Chandra; Piyush Jha

Nanoparticle or an ultrafine particle is a small solid whose physical dimension lies between 1 to 100 nanometers. Nanotechnology is the coming revolution in molecular engineering, and therefore, it is curiosity-driven and promising area of technology. The field of nanoscience and nanotechnology is interdisciplinary in nature and being studied by physicists, chemists, material scientists, biologists, engineers, computer scientists, etc. Research in the field of nanoparticles has been triggered by the recent availability of revolutionary instruments and approaches that allow the investigation of material properties with a resolution close to the atomic level. Strongly connected to such technological advances are the pioneering studies that have revealed new physical properties of matter at a level intermediate between atomic/molecular and bulk. Quantum confinement effect modifies the electronic structure of nanoparticles when their sizes become comparable to that of their Bohr excitonic radius. When the particle radius falls below the excitonic Bohr radius, the band gap energy is widened, leading to a blue shift in the band gap emission spectra, etc. On the other hand, the surface states play a more important role in the nanoparticles, due to their large surface-to-volume ratio with a decrease in particle size (surface effects). From the last few years, nanoparticles have been a common material for the development of new cutting-edge applications in communications, energy storage, sensing, data storage, optics, transmission, environmental protection, cosmetics, biology, and medicine due to their important optical, electrical, and magnetic properties.


Luminescence | 2016

Is the fracto-mechanoluminescence of ZnS:Mn phosphor dominated by charged dislocation mechanism or piezoelectrification mechanism?

B.P. Chandra; V.K. Chandra; Piyush Jha; Deepti Pateria; R.N. Baghel

Mathematical approaches made for both the charged dislocation model and piezoelectrically induced electron bombardment model of fracto-mechanoluminescence (FML), the luminescence induced by fracture of solids, in ZnS:Mn phosphor indicate that the piezoelectrically induced electron bombardment model provides a dominating process for the FML of ZnS phosphors. The concentration of 3000 ppm Mn(2+) is optimal for ML intensity of ZnS:Mn phosphor. The decay time of ML gives the relaxation time of the piston used to deform the sample and the time tm of maximum of ML is controlled by both the relaxation time of the piston and decay time of charges on the newly created surfaces of crystals. As the product of the velocity of dislocations and pinning time of dislocations gives the mean free path of a moving dislocation. Both factors play an important role in the ML excitation of impurity doped II-VI semiconductors. The linear increase of total ML intensity IT with the impact velocity indicates that the damage increases linearly with impact velocity of the load. Thus, the ML measurement can be used remotely to monitor the real-time damage in the structures, and therefore, the ML of ZnS:Mn phosphor has also the potential for a structural health monitoring system.


Luminescence | 2016

Effect of UV irradiation on different types of luminescence of SrAl2O4:Eu,Dy phosphors

Piyush Jha

This paper reports the luminescence behavior of Sr0.097 Al2 O4 :Eu0.01 ,Dy0.02 phosphors under UV-irradiation. The effect of UV-irradiation on afterglow (AG), thermoluminescence (TL) and mechanoluminescence (ML) of Sr0.097 Al2 O4 :Eu0.01 ,Dy0.02 phosphors is investigated. The space group of Sr0.097 Al2 O4 :Eu0.01 ,Dy0.02 phosphors is monoclinic P21 . The prepared phosphors exhibit a long AG, intense TL and ML. It is found that the AG, ML intensity and TL increase with increasing duration of irradiation time. The ML intensity decreases with successive impact of the load onto the phosphors, whereby the diminished ML intensity can be recovered by UV-irradiation. Copyright


Defect and Diffusion Forum | 2013

Elastico-Mechanoluminescence of Thermoluminescent Crystals

B.P. Chandra; V.K. Chandra; Piyush Jha

Elastico-mechanoluminescence (EML) is a type of luminescence induced by elastic deformation of solids. The present paper reports the elastic-ML of thermoluminescent crystals such as X-or γ-irradiated alkali halide crystals, ZnS:Mn, and ultraviolet irradiated persistent luminescent crystals. Generally, all the elastico-mechanoluminescent crystals are thermoluminescent, but all the thermoluminescent crystals are not the mechanoluminescent. The elastico-mechanoluminescence spectra of crystals are similar to their thermoluminescence spectra. Both the elastico-mechanoluminescence and thermoluminescence arise due to the de-trapping of charge carriers. As elastico-ML of persistent luminescent crystals depends on both the density of filled traps and piezoelectric field, the intense thermoluminescent crystals may not be the intense mechanoluminescent crystals. When a sample of X-or γ-irradiated alkali halide crystal, UV-irradiated persistent luminescent microcrystals mixed in epoxy resin, or a film of ZnS:Mn nanoparticles is deformed in the elastic region by the pressure rising at fixed pressing rate for a particular time, or by a pressure of triangular form, or by a pressure pulse, then after a threshold pressure, initially the EML intensity increases with time, attains a maximum value and later on it decreases with time. In the first case, the fast decay time of EML is related to the time-constant for stopping the moving crosshead of the testing machine; in the second case, generally the fast decay does not appear; and in the third case, the fast decay time is equal to the rise time of the pressure pulse. However, in all the cases, the slow decay time is related to the lifetime of re-trapped charge carriers in the shallow traps lying in the region where the piezoelectric field is negligible. When the sample is deformed by the pressure rising at fixed pressing rate for a particular time, or pressure of triangular form, then the ML appears after a threshold pressure and the transient EML intensity increases linearly with the applied pressure; however, the total EML intensity increases quadratically with the applied pressure. The EML intensity of persistent luminescent crystals decreases with increasing number of pressings. However, when these crystals are exposed to UV light, then the recovery of EML intensity takes place. The mechanical interaction between the bending segment of dislocations and filled electron traps is able to explain the elastico-ML of X-or γ-irradiated alkali halide crystals. However, the piezoelectrically-induced de-trapping model is suitable for explaining the ML of persistent luminescent crystals and ZnS:Mn. The investigation of elastico-ML may be helpful in understanding the thermoluminescence and the investigation of thermoluminescence may be helpful in understanding elastico-ML. Furthermore, similar to the thermoluminescence, the mechanoluminescence may also find application in radiation dosimetry. Expressions are derived for the elastico-ML of thermoluminescent crystals, in which a good agreement is found between the experimental and theoretical results. Finally, the application of the elasticoML of thermoluminescent crystals in light sources, displays, imaging devices, sensing devices, radiation dosimetry and in non-destructive testing of materials are discussed.Contents of Paper


Luminescence | 2016

Laser power dependence of mechanoluminescence in metals

V.D. Sonwane; Anubha S. Gour; Piyush Jha

Mechanoluminescence (ML) glow is produced on the back side when the front of a metal sample is irradiated with infrared Nd:YAG laser pulses. An incident laser beam with a power density below the plasma-flare onset threshold causes a rise in temperature in the studied metal. As the incident laser power density increases, the intensity of the ML glow signal also increases. On the basis of the laser power density-induced temperature, an expression is derived for the temperature-induced thermal stress. An expression is derived for the correlation between thermal stress and laser power density, which indicates that the temperature-induced thermal stress is directly related to the incident laser power density. In the region of plastic deformation, temperature-induced thermal stress is related to the strain and, consequently, to the emitted ML intensity. Finally, an expression is derived for the laser power dependence of the ML intensity, and good agreement is found between the theoretical and experimental results. Copyright


Defect and Diffusion Forum | 2015

Mechanoluminescence of Coloured Alkali Halide Crystals

B.P. Chandra; V.K. Chandra; Piyush Jha

The present paper reports both the experimental and mathematical aspects of elastico-mechanoluminescence (EML), plastico-mechanoluminescence (PML) and fracto-mechanoluminescence (FML) of coloured alkali halide crystals in detail, and thereby provides a deep understanding of the related phenomena. The additively coloured alkali halide crystals do not show ML during their elastic and plastic deformation. The ML emission during the elastic deformation takes place due to the mechanical interaction between bending dislocation segments and F-centres, and the ML emission during plastic deformation takes place due to the mechanical interaction between the moving dislocations and F-centres. The ML emission during fracture is also caused by the mechanical interaction between the moving dislocations and F-centres; however, in certain hard crystals like LiF, NaCl, NaF, etc., fracto ML also occurs due to the gas discharge caused by the creation of oppositely charged walls of cracks. The EML, PML, and solid state FML spectra of coloured alkali halide crystals are similar to their thermoluminescence spectra and afterglow spectra. However, the fracto ML spectra of certain hard crystals like LiF, NaCl, NaF, etc., also contain gas discharge spectra. The solid state ML spectra of coloured alkali halide crystals can be assigned to deformation-induced excitation of halide ions inV2-centres or in other hole-centres. Whereas, the intensity of EML and FML increases linearly with the applied pressure and the impact velocity, the intensity of PML increases quardratically with the applied pressure and the impact velocity because of the plastic flow of the crystals. Both Im and IT increase with the density of F-centres in the crystals and strain rate of the crystals; however, they are optimum for a particular temperature of the crystals. The ML of diminished intensity also appears during the release of applied pressure. Expressions are derived for the elastico ML, plastico ML and fracto ML of coloured alkali halide crystals, in which a good agreement is found between the experimental and theoretical results. Many parameters of crystals such as band gap between the dislocation band and interacting F-centre energy level, radius of interaction between dislocations and F-centres, pinning time of dislocations, work hardening exponent, velocity of cracks, rise time of applied pressure, lifetime of electrons in the dislocation band, lifetime of electrons in shallow traps, diffusion time of holes, critical velocity of impact, etc., can be determined from the ML measurements. The ML of coloured alkali halide crystals has potential for self-indicating method of monitoring the microscopic and macroscopic processes; mechanoluminescence dosimetry; understanding dislocation bands in crystals; interaction between the dislocations and F-centres; dynamics of dislocations; deformation bleaching of coloration, etc. The ML of coloured alkali halide crystals has also the potential for photography, ML memory, and it gives information about slip planes, compression of crystals, fragmentation of crystals, etc.Contents of Paper


Defect and Diffusion Forum | 2014

Organic Light - Emitting Diodes and their Applications

V.K. Chandra; B.P. Chandra; Piyush Jha

Organic light emitting diodes (OLEDs) have been the focus of intense study since the late 1980s, when the low voltage organic electroluminescence in small organic molecules such as Alq3, and large organic molecules such as polymers (PPV), was reported. Since that time, research has continued to demonstrate the potential of OLEDs as viable systems for displays and eco-friendly lighting applications. OLEDs offer full colour display, reduced manufacturing cost, larger viewing angle, more flexible, lower power consumption, better contrast, slimmer, etc. which help in replacing the other technologies such as LCD. The operation of OLEDs involves injection of charge carriers into organic semiconducting layers, recombination of charge carriers, formation of singlet and triplet excitons, and emission of light during decay of excitons. The maximum internal quantum efficiency of fluorescent OLEDs consisting of the emissive layer of fluorescent organic material is 25% because in this case only the 25% singlet excitons can emit light. The maximum internal quantum efficiency of phosphorescent OLEDs consisting of the emissive layer of fluorescent organic material mixed with phosphorescent material of heavy metal complexes such as platinum complexes, iridium complexes, etc. is nearly 100% because in this case both the 25% singlet excitons and 75% triplet excitons emit light. Recently, a new class of OLEDs based on thermally activated delayed fluorescence (TADF) has been reported, in which the energy gap between the singlet and triplet excited states is minimized by design, thereby promoting highly efficient spin up-conversion from non-radiative triplet states to radiative singlet states while maintaining high radiative decay rates of more than 106 decays per second. These molecules harness both singlet and triplet excitons for light emission through fluorescence decay channels and provides an intrinsic fluorescence efficiency in excess of 90 per cent and a very high external electroluminescence efficiency of more than 19 per cent, which is comparable to that achieved in high-efficiency phosphorescence-based OLEDs.The OLED technology can be used to make screens large enough for laptop, cell phones, desktop computers, televisions, etc. OLED materials could someday be applied to plastic and other materials to create wall-size video panels, roll-up screens for laptops, automotive displays, and even head wearable displays. Presently, the OLEDs are opening up completely new design possibilities for lighting in the world of tomorrow whereby the offices and living rooms could be illuminated by lighting panels on the ceiling. The present paper describes the salient features of OLEDs and discusses the applications of OLEDs in displays and solid state lighting devices. Finally, the challenges in the field of OLEDs are explored. Contents of Paper


Physica B-condensed Matter | 2015

Piezoelectrically-induced trap-depth reduction model of elastico-mechanoluminescent materials

B.P. Chandra; V.K. Chandra; Piyush Jha


Optik | 2013

Effects of Dy concentration on luminescent properties of SrAl2O4: Eu phosphors

D.S. Kshatri; Ayush Khare; Piyush Jha


Physica B-condensed Matter | 2015

Elastico-mechanoluminescence and crystal-structure relationships in persistent luminescent materials and II–VI semiconductor phosphors

B.P. Chandra; V.K. Chandra; Piyush Jha

Collaboration


Dive into the Piyush Jha's collaboration.

Top Co-Authors

Avatar

B.P. Chandra

Rani Durgavati University

View shared research outputs
Top Co-Authors

Avatar

V.K. Chandra

Chhatrapati Shivaji Institute of Technology

View shared research outputs
Top Co-Authors

Avatar

D.S. Kshatri

Shri Shankaracharya Institute of Professional Management and Technology

View shared research outputs
Top Co-Authors

Avatar

P.K. Singh

Rani Durgavati University

View shared research outputs
Top Co-Authors

Avatar

R.P. Patel

Shri Shankaracharya College of Engineering and Technology

View shared research outputs
Researchain Logo
Decentralizing Knowledge