Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Po-Ssu Huang is active.

Publication


Featured researches published by Po-Ssu Huang.


Science | 2011

A potent and broad neutralizing antibody recognizes and penetrates the HIV glycan shield.

Robert Pejchal; Katie J. Doores; Laura M. Walker; Reza Khayat; Po-Ssu Huang; Sheng-Kai Wang; Robyn L. Stanfield; Jean-Philippe Julien; Alejandra Ramos; Matthew Crispin; Rafael S. Depetris; Umesh Katpally; Andre J. Marozsan; Albert Cupo; Sebastien Maloveste; Yan Liu; Ryan McBride; Yukishige Ito; Rogier W. Sanders; Cassandra Ogohara; James C. Paulson; Ten Feizi; Christopher N. Scanlan; Chi-Huey Wong; John P. Moore; William C. Olson; Andrew B. Ward; Pascal Poignard; William R. Schief; Dennis R. Burton

An HIV antibody achieves potency and breadth by binding simultaneously to two conserved glycans on the viral envelope protein. The HIV envelope (Env) protein gp120 is protected from antibody recognition by a dense glycan shield. However, several of the recently identified PGT broadly neutralizing antibodies appear to interact directly with the HIV glycan coat. Crystal structures of antigen-binding fragments (Fabs) PGT 127 and 128 with Man9 at 1.65 and 1.29 angstrom resolution, respectively, and glycan binding data delineate a specific high mannose-binding site. Fab PGT 128 complexed with a fully glycosylated gp120 outer domain at 3.25 angstroms reveals that the antibody penetrates the glycan shield and recognizes two conserved glycans as well as a short β-strand segment of the gp120 V3 loop, accounting for its high binding affinity and broad specificify. Furthermore, our data suggest that the high neutralization potency of PGT 127 and 128 immunoglobulin Gs may be mediated by cross-linking Env trimers on the viral surface.


Science | 2013

Rational HIV Immunogen Design to Target Specific Germline B Cell Receptors

Joseph G. Jardine; Jean-Philippe Julien; Sergey Menis; Takayuki Ota; Oleksandr Kalyuzhniy; Andrew T. McGuire; Devin Sok; Po-Ssu Huang; Skye MacPherson; Meaghan Jones; Travis Nieusma; John C. Mathison; David Baker; Andrew B. Ward; Dennis R. Burton; Leonidas Stamatatos; David Nemazee; Ian A. Wilson; William R. Schief

Building Better Vaccines In the past few years, several highly potent, broadly neutralizing antibodies (bNAbs) specific for the gp120 envelope protein of HIV-1 have been discovered. The goal of this work is to use this information to inform the design of vaccines that are able to induce such antibodies (see the Perspective by Crowe). However, because of extensive somatic hypermutation, the epitope bound by these antibodies often does not bind to the germline sequence. Jardine et al. (p. 711, published online 28 March; see the cover) used computational analysis and in vitro screening to design an immunogen that could bind to VRC01-class bNAbs and to their germline precursors. Georgiev et al. (p. 751) took advantage of the fact that only four sites on the HIV viral envelope protein seem to bind bNAbs, and sera that contain particular bNAbs show characteristic patterns of neutralization. An algorithm was developed that could successfully delineate the neutralization specificity of antibodies present in polyclonal sera from HIV-infected patients. Structural knowledge of broadly neutralizing antibodies against HIV-1 guides the design of an immunogen to elicit them. Vaccine development to induce broadly neutralizing antibodies (bNAbs) against HIV-1 is a global health priority. Potent VRC01-class bNAbs against the CD4 binding site of HIV gp120 have been isolated from HIV-1–infected individuals; however, such bNAbs have not been induced by vaccination. Wild-type gp120 proteins lack detectable affinity for predicted germline precursors of VRC01-class bNAbs, making them poor immunogens to prime a VRC01-class response. We employed computation-guided, in vitro screening to engineer a germline-targeting gp120 outer domain immunogen that binds to multiple VRC01-class bNAbs and germline precursors, and elucidated germline binding crystallographically. When multimerized on nanoparticles, this immunogen (eOD-GT6) activates germline and mature VRC01-class B cells. Thus, eOD-GT6 nanoparticles have promise as a vaccine prime. In principle, germline-targeting strategies could be applied to other epitopes and pathogens.


Nature | 2016

The coming of age of de novo protein design

Po-Ssu Huang; David Baker

There are 20200 possible amino-acid sequences for a 200-residue protein, of which the natural evolutionary process has sampled only an infinitesimal subset. De novo protein design explores the full sequence space, guided by the physical principles that underlie protein folding. Computational methodology has advanced to the point that a wide range of structures can be designed from scratch with atomic-level accuracy. Almost all protein engineering so far has involved the modification of naturally occurring proteins; it should now be possible to design new functional proteins from the ground up to tackle current challenges in biomedicine and nanotechnology.


Science | 2011

Computation-guided backbone grafting of a discontinuous motif onto a protein scaffold.

Mihai L. Azoitei; Bruno E. Correia; Yih En Andrew Ban; Chris Carrico; Oleksandr Kalyuzhniy; Lei Chen; Alexandria Schroeter; Po-Ssu Huang; Jason Mclellan; Peter D. Kwong; David Baker; Roland K. Strong; William R. Schief

A two-segment HIV epitope grafted into a scaffold protein maintains high affinity for a broadly neutralizing antibody. The manipulation of protein backbone structure to control interaction and function is a challenge for protein engineering. We integrated computational design with experimental selection for grafting the backbone and side chains of a two-segment HIV gp120 epitope, targeted by the cross-neutralizing antibody b12, onto an unrelated scaffold protein. The final scaffolds bound b12 with high specificity and with affinity similar to that of gp120, and crystallographic analysis of a scaffold bound to b12 revealed high structural mimicry of the gp120-b12 complex structure. The method can be generalized to design other functional proteins through backbone grafting.


Science | 2014

High thermodynamic stability of parametrically designed helical bundles

Po-Ssu Huang; Gustav Oberdorfer; Chunfu Xu; Xue Y. Pei; Brent L. Nannenga; Joseph M. Rogers; Frank DiMaio; Tamir Gonen; Ben F. Luisi; David Baker

Building with alphahelical coiled coils Understanding how proteins fold into well-defined three-dimensional structures has been a longstanding challenge. Increased understanding has led to increased success at designing proteins that mimic existing protein folds. This raises the possibility of custom design of proteins with structures not seen in nature. Thomson et al. describe the design of channelcontaining α-helical barrels, and Huang et al. designed hyperstable helical bundles. Both groups used rational and computational design to make new protein structures based on α-helical coiled coils but took different routes to reach different target structures. Science, this issue p. 485, p. 481 Protein design expands the repertoire of coiled-coil structures to α-helical barrels and hyperstable helical bundles. We describe a procedure for designing proteins with backbones produced by varying the parameters in the Crick coiled coil–generating equations. Combinatorial design calculations identify low-energy sequences for alternative helix supercoil arrangements, and the helices in the lowest-energy arrangements are connected by loop building. We design an antiparallel monomeric untwisted three-helix bundle with 80-residue helices, an antiparallel monomeric right-handed four-helix bundle, and a pentameric parallel left-handed five-helix bundle. The designed proteins are extremely stable (extrapolated ΔGfold > 60 kilocalories per mole), and their crystal structures are close to those of the design models with nearly identical core packing between the helices. The approach enables the custom design of hyperstable proteins with fine-tuned geometries for a wide range of applications.


Science | 2017

Protein structure determination using metagenome sequence data

Sergey Ovchinnikov; Hahnbeom Park; Neha Varghese; Po-Ssu Huang; Georgios A. Pavlopoulos; David E. Kim; Hetunandan Kamisetty; Nikos C. Kyrpides; David Baker

Filling in the protein fold picture Fewer than a third of the 14,849 known protein families have at least one member with an experimentally determined structure. This leaves more than 5000 protein families with no structural information. Protein modeling using residue-residue contacts inferred from evolutionary data has been successful in modeling unknown structures, but it requires large numbers of aligned sequences. Ovchinnikov et al. augmented such sequence alignments with metagenome sequence data (see the Perspective by Söding). They determined the number of sequences required to allow modeling, developed criteria for model quality, and, where possible, improved modeling by matching predicted contacts to known structures. Their method predicted quality structural models for 614 protein families, of which about 140 represent newly discovered protein folds. Science, this issue p. 294; see also p. 248 Combining metagenome data with protein structure prediction generates models for 614 families with unknown structures. Despite decades of work by structural biologists, there are still ~5200 protein families with unknown structure outside the range of comparative modeling. We show that Rosetta structure prediction guided by residue-residue contacts inferred from evolutionary information can accurately model proteins that belong to large families and that metagenome sequence data more than triple the number of protein families with sufficient sequences for accurate modeling. We then integrate metagenome data, contact-based structure matching, and Rosetta structure calculations to generate models for 614 protein families with currently unknown structures; 206 are membrane proteins and 137 have folds not represented in the Protein Data Bank. This approach provides the representative models for large protein families originally envisioned as the goal of the Protein Structure Initiative at a fraction of the cost.


Protein Science | 2007

A de novo designed protein–protein interface

Po-Ssu Huang; John J. Love; Stephen L. Mayo

As an approach to both explore the physical/chemical parameters that drive molecular self‐assembly and to generate novel protein oligomers, we have developed a procedure to generate protein dimers from monomeric proteins using computational protein docking and amino acid sequence design. A fast Fourier transform‐based docking algorithm was used to generate a model for a dimeric version of the 56‐amino‐acid β1 domain of streptococcal protein G. Computational amino acid sequence design of 24 residues at the dimer interface resulted in a heterodimer comprised of 12‐fold and eightfold variants of the wild‐type protein. The designed proteins were expressed, purified, and characterized using analytical ultracentrifugation and heteronuclear NMR techniques. Although the measured dissociation constant was modest (∼300 μM), 2D‐[1H,15N]‐HSQC NMR spectra of one of the designed proteins in the absence and presence of its binding partner showed clear evidence of specific dimer formation.


PLOS ONE | 2011

RosettaRemodel: A Generalized Framework for Flexible Backbone Protein Design

Po-Ssu Huang; Yih-En Andrew Ban; Florian Richter; Ingemar André; Robert B. Vernon; William R. Schief; David Baker

We describe RosettaRemodel, a generalized framework for flexible protein design that provides a versatile and convenient interface to the Rosetta modeling suite. RosettaRemodel employs a unified interface, called a blueprint, which allows detailed control over many aspects of flexible backbone protein design calculations. RosettaRemodel allows the construction and elaboration of customized protocols for a wide range of design problems ranging from loop insertion and deletion, disulfide engineering, domain assembly, loop remodeling, motif grafting, symmetrical units, to de novo structure modeling.


Nature | 2015

Exploring the repeat protein universe through computational protein design.

T. J. Brunette; Fabio Parmeggiani; Po-Ssu Huang; Gira Bhabha; Damian C. Ekiert; Susan E. Tsutakawa; Greg L. Hura; John A. Tainer; David Baker

A central question in protein evolution is the extent to which naturally occurring proteins sample the space of folded structures accessible to the polypeptide chain. Repeat proteins composed of multiple tandem copies of a modular structure unit are widespread in nature and have critical roles in molecular recognition, signalling, and other essential biological processes. Naturally occurring repeat proteins have been re-engineered for molecular recognition and modular scaffolding applications. Here we use computational protein design to investigate the space of folded structures that can be generated by tandem repeating a simple helix–loop–helix–loop structural motif. Eighty-three designs with sequences unrelated to known repeat proteins were experimentally characterized. Of these, 53 are monomeric and stable at 95 °C, and 43 have solution X-ray scattering spectra consistent with the design models. Crystal structures of 15 designs spanning a broad range of curvatures are in close agreement with the design models with root mean square deviations ranging from 0.7 to 2.5 Å. Our results show that existing repeat proteins occupy only a small fraction of the possible repeat protein sequence and structure space and that it is possible to design novel repeat proteins with precisely specified geometries, opening up a wide array of new possibilities for biomolecular engineering.


Nature | 2016

Design of a hyperstable 60-subunit protein icosahedron

Yang Hsia; Jacob B. Bale; Shane Gonen; Dan Shi; William Sheffler; Kimberly K. Fong; Una Nattermann; Chunfu Xu; Po-Ssu Huang; Rashmi Ravichandran; Sue Yi; Trisha N. Davis; Tamir Gonen; Neil P. King; David Baker

The icosahedron is the largest of the Platonic solids, and icosahedral protein structures are widely used in biological systems for packaging and transport. There has been considerable interest in repurposing such structures for applications ranging from targeted delivery to multivalent immunogen presentation. The ability to design proteins that self-assemble into precisely specified, highly ordered icosahedral structures would open the door to a new generation of protein containers with properties custom-tailored to specific applications. Here we describe the computational design of a 25-nanometre icosahedral nanocage that self-assembles from trimeric protein building blocks. The designed protein was produced in Escherichia coli, and found by electron microscopy to assemble into a homogenous population of icosahedral particles nearly identical to the design model. The particles are stable in 6.7 molar guanidine hydrochloride at up to 80 degrees Celsius, and undergo extremely abrupt, but reversible, disassembly between 2 molar and 2.25 molar guanidinium thiocyanate. The icosahedron is robust to genetic fusions: one or two copies of green fluorescent protein (GFP) can be fused to each of the 60 subunits to create highly fluorescent ‘standard candles’ for use in light microscopy, and a designed protein pentamer can be placed in the centre of each of the 20 pentameric faces to modulate the size of the entrance/exit channels of the cage. Such robust and customizable nanocages should have considerable utility in targeted drug delivery, vaccine design and synthetic biology.

Collaboration


Dive into the Po-Ssu Huang's collaboration.

Top Co-Authors

Avatar

David Baker

University of Washington

View shared research outputs
Top Co-Authors

Avatar

William R. Schief

Scripps Research Institute

View shared research outputs
Top Co-Authors

Avatar

Stephen L. Mayo

California Institute of Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

John J. Love

San Diego State University

View shared research outputs
Top Co-Authors

Avatar

Neil P. King

University of Washington

View shared research outputs
Top Co-Authors

Avatar

Tamir Gonen

University of California

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Yun Mou

California Institute of Technology

View shared research outputs
Researchain Logo
Decentralizing Knowledge