Po-Yu Tsai
National Taiwan University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Po-Yu Tsai.
Journal of Physical Chemistry Letters | 2014
Po-Yu Tsai; Kai-Chan Hung; Hou-Kuan Li; King-Chuen Lin
Time-resolved Fourier transform infrared emission spectroscopy is employed in the photolysis of propionaldehyde (CH3CH2CHO) at 248 nm to characterize the role of the roaming pathway. High-resolution spectra of CO are analyzed to yield a single Boltzmann rotational distribution for each vibrational level (ν = 1-4) with small rotational and large vibrational energy disposals. A roaming saddle point is found containing two far separated moieties of HCO and CH3CH2 with a weak interaction between them. Quasiclassical trajectory calculations on this configuration yield the CO energy flow behavior, consistent with the findings. The rate constant along the roaming pathway is evaluated to be larger by >1-2 orders of magnitude than those along tight transition state or three-body dissociation pathways. This work implies that the roaming mechanism plays an increasingly important role in aliphatic aldehydes as the molecular size becomes larger.
Rend. Fis. Acc. Lincei | 2013
Federico Palazzetti; Po-Yu Tsai; Andrea Lombardi; Masaaki Nakamura; Dock-Chil Che; Toshio Kasai; King-Chuen Lin; Vincenzo Aquilanti
Emergence of biochemical homochirality is an intriguing topic, and none of the proposed scenarios has encountered a unanimous consensus. Candidates for naturally occurring processes, which may originate chiral selection, involve interaction of matter with light and molecular collisions. We performed and report here: (1) simulations of photodissociation of an oriented chiral molecule by linearly polarized (achiral) light observing that the angular distribution of the photofragments is characteristic of each enantiomer and both differ from the racemic mixture; and (2) molecular dynamics simulations (elastic collisions of oriented hydrogen peroxide, one of the most simple chiral molecules, with Ne atom) demonstrating that the scattering and the recoil angles are specific of the enantiomeric form. The efficacy of non-chiral light (in the case of photodissociation) and of non-chiral projectile (in the case of collisions) is due to the molecular orientation, as an essential requirement to observe chiral effects. The results of the simulations, that we report in this article, provide the background for the perspective realization of experiments which go beyond the well-documented ones involving interaction of circularly polarized laser (chiral light) with the matter, specifically by making use of non-chiral, i.e. linearly polarized or unpolarized light sources, and also by obtaining chiral effects with no use at all of light, but simply inducing them by molecular collisions. The case of vortices is discussed in a companion paper.
Journal of Chemical Physics | 2009
Hsin-Lung Lee; Ping‐Chen Lee; Po-Yu Tsai; King-Chuen Lin; H. H. Kuo; P. H. Chen; Agnes H. H. Chang
Br(2) molecular elimination is probed in the photodissociation of 1,1- and 1,2-C(2)H(4)Br(2) isomeric forms at 248 nm by using cavity ring-down absorption spectroscopy. Their photodissociation processes differ markedly from each other. The quantum yield of the Br(2) fragment in 1,2-dibromoethane is 0.36+/-0.18, in contrast to a value of 0.05+/-0.03 in 1,1-dibromoethane. The vibrational population ratios of Br(2)(v=1)/Br(2)(v=0) are 0.8+/-0.1 and 0.5+/-0.2 for 1,2- and 1,1-dibromoethanes, respectively. The Br(2) yield densities are found to increase by a factor of 35% and 190% for 1,2- and 1,1-dibromoethanes within the same temperature increment. In the ab initio potential energy calculations, the transition state (TS) along the adiabatic ground state surface may correlate to the Br(2) products. The TS energy for 1,2-dibromoethane is well below the excitation energy at 483 kJ/mol, whereas that for 1,1-dibromoethane is slightly above. Such a small TS energy barrier impedes the photodissociation of the ground state 1,1-dibromoethane such that the production yield of Br(2) may become relatively low, but rise rapidly with the temperature. The TS structure shows a larger bond distance of Br-Br in 1,2-dibromoethane than that in 1,1-dibromoethane. That explains why the former isomer may result in hotter vibrational population of the Br(2) fragments.
Journal of Chemical Physics | 2014
Kai-Chan Hung; Po-Yu Tsai; Hou-Kuan Li; King-Chuen Lin
By using time-resolved Fourier-transform infrared emission spectroscopy, the HCO fragment dissociated from acetaldehyde (CH3CHO) at 248 nm is found to partially decompose to H and CO. The fragment yields are enhanced by the Ar addition that facilitates the collision-induced internal conversion. The channels to CH2CO + H2 and CH3CO + H are not detected significantly. The rotational population distribution of CO, after removing the Ar collision effect, shows a bimodal feature comprising both low- and high-rotational (J) components, sharing a fraction of 19% and 81%, respectively, for the vibrational state v = 1. The low-J component is ascribed to both roaming pathway and triple fragmentation. They are determined to have a branching ratio of <0.13 and >0.06, respectively, relative to the whole v = 1 population. The CO roaming is accompanied by a highly vibrational population of CH4 that yields a vibrational bimodality.
Journal of Chemical Physics | 2015
Hou-Kuan Li; Po-Yu Tsai; Kai-Chan Hung; Toshio Kasai; King-Chuen Lin
Following photodissociation of acetaldehyde (CH3CHO) at 308 nm, the CO(v = 1-4) fragment is acquired using time-resolved Fourier-transform infrared emission spectroscopy. The CO(v = 1) rotational distribution shows a bimodal feature; the low- and high-J components result from H-roaming around CH3CO core and CH3-roaming around CHO radical, respectively, in consistency with a recent assignment by Kable and co-workers (Lee et al., Chem. Sci. 5, 4633 (2014)). The H-roaming pathway disappears at the CO(v ≥ 2) states, because of insufficient available energy following bond-breaking of H + CH3CO. By analyzing the CH4 emission spectrum, we obtained a bimodal vibrational distribution; the low-energy component is ascribed to the transition state (TS) pathway, consistent with prediction by quasiclassical trajectory calculations, while the high-energy component results from H- and CH3-roamings. A branching fraction of H-roaming/CH3-roaming/TS contribution is evaluated to be (8% ± 3%)/(68% ± 10%)/(25% ± 5%), in which the TS pathway was observed for the first time. The three pathways proceed concomitantly along the electronic ground state surface.
Journal of Physical Chemistry A | 2010
Yu-Ting Liu; Ming-Tsang Tsai; Chia-Yun Liu; Po-Yu Tsai; King-Chuen Lin; Y. H. Shih; Agnes H. H. Chang
In one-photon dissociation of gaseous acetyl chloride at 248 nm, time-resolved Fourier-transform infrared emission spectroscopy is used to detect the fragments of HCl, CO, and CH(2) in the presence of Ar or O(2). The high-resolution spectra of HCl and CO are analyzed to yield the corresponding internal energy deposition of 8.9 +/- 1.1 and 6.2 +/- 0.9 kcal/mol. The presence of the CH(2) fragment is verified by detecting the CO(2) product resulting from the reaction of CH(2) and the added O(2). The probability of the HCl formation via a hot Cl reaction with the precursor is examined to be negligible by performing two experiments, the CH(3)COCl pressure dependence and the measurement of Br(2) with Cl reaction. The HCl elimination channel under the Ar addition is verified to be slowed by 2 orders of magnitude, as compared to the Cl elimination channel. The observed fragments are proposed to dissociate on the hot ground electronic state via collision-induced internal conversion. A two-body dissociation channel is favored leading to HCl and CH(2)CO, followed by secondary dissociation.
Journal of Physical Chemistry A | 2016
Masaaki Nakamura; Shiun-Jr Yang; Po-Yu Tsai; Toshio Kasai; King-Chuen Lin; Dock-Chil Che; Andrea Lombardi; Federico Palazzetti; Vincenzo Aquilanti
Molecular orientation is a fundamental requisite in the study of stereodirected dynamics of collisional and photoinitiated processes. In this past decade, variable hexapolar electric filters have been developed and employed for the rotational-state selection and the alignment of molecules of increasing complexity, for which the main difficulties are their mass, their low symmetry, and the very dense rotational manifold. In this work, for the first time, a complex molecule such as 2-bromobutane, an asymmetric top containing a heavy atom (the bromine), was successfully oriented by a weak homogeneous field placed downstream from the hexapolar filter. Efficiency of the orientation was characterized experimentally, by combining time-of-flight measurements and a slice-ion-imaging detection technique. The application is described to the photodissociation dynamics of the oriented 2-bromobutane, which was carried out at a laser wavelength of 234 nm, corresponding to the breaking of the C-Br bond. The Br photofragment is produced in both the ground Br ((2)P3/2) and the excited Br ((2)P1/2) electronic states, and both channels are studied by the slice imaging technique, revealing new features in the velocity and angular distributions with respect to previous investigations on nonoriented molecules.
Journal of Physical Chemistry A | 2016
Andrea Lombardi; Federico Palazzetti; Vincenzo Aquilanti; Hou-Kuan Li; Po-Yu Tsai; Toshio Kasai; King-Chuen Lin
For the photodissociation of the simplest of esters, methyl formate HCOOCH3, the energy threshold for triple fragmentation into H, CH3O, and CO was measured by previous ion-imaging experiments at a sequence of wavelengths. The translational energy features of product CO in the ground vibrational level (υ = 0) and for selected rotational states were characterized. In this integrated experimental and theoretical approach (i) the focus is at a laser energy barely below that threshold; (ii) Fourier-transform infrared emission spectroscopy measurements probe the rovibrational energy deposition in CO(υ) for υ > 0 and the emergence of the roaming phenomenon; (iii) accompanying quantum chemical calculations describe the selective rupture of bonds; and (iv) molecular dynamics simulations of dissociation are performed, introducing an approach explicitly involving outcomes from paths originated nonadiabatically through conical intersections. Quantitative information on energy disposal is provided: we found extensive vibrational excitation of CO, while rotational bands are colder and bimodal, due to contributions from direct and roaming modes.
Journal of Chemical Physics | 2011
Shun-Yi Chen; Po-Yu Tsai; Hsiang-Chin Lin; Chia-Ching Wu; King-Chuen Lin; Bing-Jian Sun; Agnes H. H. Chang
Following single-photon dissociation of CH(2)I(2) at 248 nm, I(2) molecular elimination is detected by using cavity ring-down absorption spectroscopy. The technique comprises two laser beams propagating in a perpendicular configuration, in which a tunable laser beam along the axis of the ring-down cell probes the I(2) fragment in the B (3)Π(ou)(+) - X (1)Σ(g)(+) transition. The nascent vibrational populations for v = 0, 1, and 2 levels are obtained with a population ratio of 1:(0.65 ± 0.10):(0.30 ± 0.05), corresponding to a Boltzmann-like vibrational temperature of 544 ± 73 K. The quantum yield of the ground state I(2) elimination reaction is determined to be 0.0040 ± 0.0025. With the aid of ab initio potential energy calculations, the pathway of molecular elimination is proposed on the energetic ground state CH(2)I(2) via internal conversion, followed by asynchronous three-center dissociation. A positive temperature effect supports the proposed mechanism.
Journal of Physical Chemistry A | 2015
Po-Yu Tsai; King-Chuen Lin
Without the need to construct complicated potential energy surfaces, a multicenter impulsive model is developed to characterize the dynamical feature of conventional transition state (TS) and roaming pathways in the photodissociation of formaldehyde, H2CO → CO + H2. The photofragment energy distributions (PED) resulting from the roaming mechanism are found to closely correlate to a particular configuration that lies close to the edge of the plateau-like intrinsic reaction coordinate, whereas such a PED is associated with the configuration at the saddle point when the conventional TS pathway is followed. The evaluated PED results are consistent with those by experimental findings and quasi-classical trajectory calculations. Following impulsive analysis, the roaming pathway can be viewed as a consequence of energy transfer events between several vibrational modes. For H2CO, the available energy initially accumulated at the C-H bond is transferred to other transitional mode(s) via stretching-bending coupling, and finally to the HH stretching.