Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Poh Koon Koh is active.

Publication


Featured researches published by Poh Koon Koh.


Journal of Proteome Research | 2009

Metabolic Profiling of Human Colorectal Cancer Using High-Resolution Magic Angle Spinning Nuclear Magnetic Resonance (HR-MAS NMR) Spectroscopy and Gas Chromatography Mass Spectrometry (GC/MS)

Eric Chun Yong Chan; Poh Koon Koh; Mainak Mal; Peh Yean Cheah; Kong Weng Eu; Alexandra Backshall; Rachel Cavill; Jeremy K. Nicholson; Hector C. Keun

Current clinical strategy for staging and prognostication of colorectal cancer (CRC) relies mainly upon the TNM or Duke system. This clinicopathological stage is a crude prognostic guide because it reflects in part the delay in diagnosis in the case of an advanced cancer and gives little insight into the biological characteristics of the tumor. We hypothesized that global metabolic profiling (metabonomics/metabolomics) of colon mucosae would define metabolic signatures that not only discriminate malignant from normal mucosae, but also could distinguish the anatomical and clinicopathological characteristics of CRC. We applied both high-resolution magic angle spinning nuclear magnetic resonance (HR-MAS NMR) and gas chromatography mass spectrometry (GC/MS) to analyze metabolites in biopsied colorectal tumors and their matched normal mucosae obtained from 31 CRC patients. Orthogonal partial least-squares discriminant analysis (OPLS-DA) models generated from metabolic profiles obtained by both analytical approaches could robustly discriminate normal from malignant samples (Q(2) > 0.50, Receiver Operator Characteristic (ROC) AUC >0.95, using 7-fold cross validation). A total of 31 marker metabolites were identified using the two analytical platforms. The majority of these metabolites were associated with expected metabolic perturbations in CRC including elevated tissue hypoxia, glycolysis, nucleotide biosynthesis, lipid metabolism, inflammation and steroid metabolism. OPLS-DA models showed that the metabolite profiles obtained via HR-MAS NMR could further differentiate colon from rectal cancers (Q(2)> 0.60, ROC AUC = 1.00, using 7-fold cross validation). These data suggest that metabolic profiling of CRC mucosae could provide new phenotypic biomarkers for CRC management.


Rapid Communications in Mass Spectrometry | 2009

Development and validation of a gas chromatography/mass spectrometry method for the metabolic profiling of human colon tissue

Mainak Mal; Poh Koon Koh; Peh Yean Cheah; Eric Chun Yong Chan

In this study, a gas chromatography/mass spectrometry (GC/MS) method was developed and validated for the metabolic profiling of human colon tissue. Each colon tissue sample (20 mg) was ultra-sonicated with 1 mL of a mixture of chloroform/methanol/water in the ratio of 20:50:20 (v/v/v), followed by centrifugation, collection of supernatant, drying, removal of moisture using anhydrous toluene and finally derivatization using N-methyl-N-trifluoroacetamide (MSTFA) with 1% trimethylchlorosilane (TMCS). A volume of 1 microL of the derivatized mixture was injected into the GC/MS system. A total of 53 endogenous metabolites were separated and identified in the GC/MS chromatogram, all of which were selected to evaluate the sample stability and precision of the method. Of the identified endogenous metabolites 19 belonging to diverse chemical classes and covering a wide range of the GC retention times (Rt) were selected to investigate the quantitative linearity of the method. The developed GC/MS method demonstrated good reproducibility with intra- and inter-day precision within relative standard deviation (RSD) of +/-15%. The metabolic profiles of the intact tissue were determined to be stable (100 +/- 15%) for up to 90 days at -80 degrees C. Satisfactory results were also obtained in the case of other stability-indicating studies such as freeze/thaw cycle stability, bench-top stability and autosampler stability. The developed method showed a good linear response for each of the 19 analytes tested (r(2) > 0.99). Our GC/MS metabolic profiling method was successfully applied to discriminate biopsied colorectal cancer (CRC) tissue from their matched normal tissue obtained from six CRC patients using orthogonal partial least-squares discriminant analysis [two latent variables, R(2)Y = 0.977 and Q(2) (cumulative) = 0.877].


Rapid Communications in Mass Spectrometry | 2011

Ultra-pressure liquid chromatography/tandem mass spectrometry targeted profiling of arachidonic acid and eicosanoids in human colorectal cancer.

Mainak Mal; Poh Koon Koh; Peh Yean Cheah; Eric Chun Yong Chan

Cumulative evidence shows that eicosanoids such as prostaglandins, leukotrienes, thromboxanes and hydroxy eicosatetraenoic acids play an important role in associating inflammation with human colorectal cancer (CRC). In this study an ultra-pressure liquid chromatography/tandem mass spectrometry (UPLC/MS/MS) method was developed and validated for the targeted profiling of eight relevant eicosanoids and the major metabolic precursor, arachidonic acid (AA), in human colon. Multiple reaction monitoring (MRM) experiments were performed in negative electrospray ionization mode. The metabolites were separated using a C(18) column consisting of 1.7 µm ethylene-bridged hybrid particles (100 × 2.1 mm i.d.) and gradient elution (50 to 95% of solvent B) with a mobile phase comprising water (0.1% formic acid) [solvent A] and acetonitrile (0.1% formic acid) [solvent B] at a flow rate of 0.4 mL/min. The analysis time for each sample was 5.5 min. Our UPLC/MS/MS method demonstrated satisfactory validation results in terms of selectivity, sensitivity, matrix effect, linearity, extraction efficiency, intra- and inter-day precision, accuracy and autosampler stability. The method was applied for the clinical profiling of matched pairs of cancerous and normal colon mucosae obtained from eight colorectal cancer patients. Endogenous levels of AA and selected eicosanoids such as prostaglandin E(2) (PGE(2)), prostacyclin (PGI(2)) [assayed as its stable hydrolytic product 6-keto-prostaglandin(1α) (6-k PGF(1α))] and 12-hydroxy-5Z,8Z,10E,14Z-eicosatetraenoic acid (12-HETE) were found to be significantly different (p <0.05; paired t-test) between cancerous and normal mucosae.


Cancer Biology & Therapy | 2014

Non-invasive fecal metabonomic detection of colorectal cancer

Lee Cheng Phua; Xiu Ping Chue; Poh Koon Koh; Peh Yean Cheah; Han Kiat Ho; Eric Chun Yong Chan

Colorectal cancer (CRC) is a major cause of mortality in many developed countries. Effective screening strategies were called for to facilitate timely detection and to promote a better clinical outcome. In this study, the role of fecal metabonomics in the non-invasive detection of CRC was investigated. Gas chromatography/time-of-flight mass spectrometry (GC/TOFMS) was utilized for the metabolic profiling of feces obtained from 11 CRC patients and 10 healthy subjects. Concurrently, matched tumor and normal mucosae surgically excised from CRC patients were profiled. CRC patients were differentiated clearly from healthy subjects based on their fecal metabonomic profiles (orthogonal partial least squares discriminant analysis [OPLS-DA], 1 predictive and 3 Y-orthogonal components, R2X = 0.373, R2Y = 0.995, Q2 [cumulative] = 0.215). The robustness of the OPLS-DA model was demonstrated by an area of 1 under the receiver operator characteristic curve. OPLS-DA revealed fecal marker metabolites (e.g., fructose, linoleic acid, and nicotinic acid) that provided novel insights into the tumorigenesis of CRC. Interestingly, a disparate set of CRC-related metabolic aberrations occurred at the tissue level, implying the contribution of processes beyond the direct shedding of tumor cells to the fecal metabotype. In summary, this work established proof-of-principle for GC/TOFMS-based fecal metabonomic detection of CRC and offered new perspectives on the underlying mechanisms.


Journal of Chromatography B | 2013

Global gas chromatography/time-of-flight mass spectrometry (GC/TOFMS)-based metabonomic profiling of lyophilized human feces

Lee Cheng Phua; Poh Koon Koh; Peh Yean Cheah; Han Kiat Ho; Eric Chun Yong Chan

Gas chromatography mass spectrometry (GC/MS)-based fecal metabonomics represents a powerful systems biology approach for elucidating metabolic biomarkers of lower gastrointestinal tract (GIT) diseases. Unlike metabolic profiling of fecal water, the profiling of complete fecal material remains under-explored. Here, a gas chromatography/time-of-flight mass spectrometry (GC/TOFMS) method was developed and validated for the global metabonomic profiling of human feces. Fecal and fecal water metabotypes were also profiled and compared. Additionally, the unclear influence of blood in stool on the fecal metabotype was investigated unprecedentedly. Eighty milligram of lyophilized feces was ultrasonicated with 1mL of methanol:water (8:2) for 30min, followed by centrifugation, drying of supernatant, oximation and trimethylsilylation for 45min. Lyophilized feces demonstrated a more comprehensive metabolic coverage than fecal water, based on the number of chromatographic peaks. Principal component analysis (PCA) indicated occult blood (1mgHb/g feces) exerted a negligible effect on the fecal metabotype. Conversely, a unique metabotype related to feces spiked with gross blood (100mgHb/g feces) was revealed (PCA, R(2)X=0.837, Q(2)=0.794), confirming the potential confounding effect of gross GIT bleeding on the fecal metabotype. This pertinent finding highlights the importance of prudent interpretation of fecal metabonomic data, particularly in GIT diseases where bleeding is prevalent.


Oncology Reports | 2014

Global fecal microRNA profiling in the identification of biomarkers for colorectal cancer screening among Asians

Lee Cheng Phua; Xiu Ping Chue; Poh Koon Koh; Peh Yean Cheah; Eric Chun Yong Chan; Han Kiat Ho

Fecal microRNAs (miRNAs) are increasingly explored as non-invasive markers of colorectal cancer (CRC). However, its holistic profile in Asian CRC patients remains elusive. In the present study, the global human fecal miRNAs in Asian Chinese CRC patients was assayed to elucidate novel diagnostic fecal markers. Additionally, the influence of blood in stool on fecal miRNA levels was investigated for the first time. Microarray analysis was applied to profile the fecal miRNAs extracted from CRC patients and healthy subjects. Concurrently, surgically resected tumor and matched normal mucosae were analyzed. Potential fecal miRNA markers were further confirmed using real-time PCR in 17 CRC patients and 28 healthy subjects. Global miRNA profiling uncovered 17 fecal markers (p<0.05) differentially regulated in CRC. Fecal miR-223 and miR-451 represented robust markers in distinguishing CRC patients from healthy subjects, as evident from areas under the receiver operator characteristic curves of 0.939 and 0.971, respectively. Blood in stool affected fecal miR-451, miR-223 and miR-135b levels to a varying extent and substantially impacted the interpretation of the clinical data. Notably, a discrete set of aberrant miRNAs occurred within the tumor, indicating the presence of contributors beyond the exfoliation of tumor cells to the fecal miRNA profile. In summary, the utility of a global miRNA screening approach was successfully demonstrated in elucidating diagnostic markers of CRC. In particular, fecal miR-223 and miR-451 hold promise in detecting CRC.


PLOS ONE | 2012

Association of Caucasian-Identified Variants with Colorectal Cancer Risk in Singapore Chinese

Lai Fun Thean; Huihua Li; Yik-Ying Teo; Woon-Puay Koh; Jian-Min Yuan; Mei Lin Teoh; Poh Koon Koh; Choong Leong Tang; Peh Yean Cheah

Background Genome-wide association studies (GWAS) in Caucasians have identified fourteen index single nucleotide polymorphisms (iSNPs) that influence colorectal cancer (CRC) risk. Methods We investigated the role of eleven iSNPs or surrogate SNPs (sSNPs), in high linkage disequilibrium (LD, r2≥0.8) and within 100 kb vicinity of iSNPs, in 2,000 age- and gender-matched Singapore Chinese (SCH) cases and controls. Results Only iSNP rs6983267 at 8q24.21 and sSNPs rs6695584, rs11986063, rs3087967, rs2059254, and rs7226855 at 1q41, 8q23.3, 11q23.1, 16q22.1 and 18q21.1 respectively showed evidence of association with CRC risk, with odds ratios (OR) ranging from 1.13 to 1.40. sSNP rs827401 at 10p14 was associated with rectal cancer risk (OR = 0.74, 95% CI 0.63–0.88) but not disease prognosis (OR = 0.91, 95% CI 0.69–1.20). Interestingly, sSNP rs3087967 at 11q23.1 was associated with CRC risk in men (OR = 1.34, 95% CI 1.14–1.58) but not women (OR = 1.07, 95% CI: 0.88–1.29), suggesting a gender-specific role. Half of the Caucasian-identified variants, including the recently fine-mapped BMP pathway loci, BMP4, GREM1, BMP2 and LAMA 5, did not show any evidence for association with CRC in SCH (OR ∼1; p-value >0.1). Comparing the results of this study with that of the Northern and Hong Kong Chinese, only variants at chromosomes 8q24.21, 10p14, 11q23.1 and 18q21.1 were replicated in at least two out of the three Chinese studies. Conclusions The contrasting results between Caucasians and Chinese could be due to different LD patterns and allelic frequencies or genetic heterogeneity. The results suggest that additional common variants contributing to CRC predisposition remained to be identified.


Nature Genetics | 2013

The classification of intestinal polyposis

Peh Yean Cheah; Kiat Hon Lim; Poh Koon Koh; Choong Leong Tang

1. Jaeger, E. et al. Nat. Genet. 44, 699–705 (2012). 2. Cheah, P.Y. et al. Am. J. Gastroenterol. 104, 3027– 3033 (2009). 3. Merg, A. & Howe, J.R. Am. J. Med. Genet. 129c, 44–55 (2004). 4. Whitelaw, S.C. et al. Gastroenterology 112, 327–334 (1997). 5. Cao, X. et al. J. Med. Genet. 43, e13 (2006). 6. Cheah, P.Y. Crit. Rev. Oncol. Hematol. 69, 45–55 (2009). 7. O’Riordan, J.M. et al. Colorectal Dis. 12, 570–573 (2012).


European Journal of Human Genetics | 2014

A novel indel in exon 9 of APC upregulates a ‘skip exon 9’ isoform and causes very severe familial adenomatous polyposis

Peh Yean Cheah; Yu Hui Wong; Poh Koon Koh; Carol Loi; Min Hoe Chew; Choong Leong Tang

Germline mutation in the adenomatous polyposis coli (APC) gene causes the majority (80%) of familial adenomatous polyposis (FAP), an autosomal dominantly inherited form of colorectal cancer (CRC). Mutation in 5′end of exon 9 of APC usually results in an attenuated form of FAP (aFAP), characterized by later age of onset and fewer polyps. The presence of exon 9a, an in-frame isoform with exon 8 spliced to 3′end of exon 9, modulates any deleterious effect of the mutation. A third lowly expressed isoform that completely skips exon 9 is present in both healthy individuals and FAP patients. We report here an interesting case of a proband with an APC mutation in 5′end of exon 9 that presented with six synchronous advanced CRCs at age 37. The novel insertion–deletion (indel) at codon 409, c.1226-1229delTTTTinsAAA, caused upregulation of the ‘skip exon 9’ isoform, r934-1312del, resulting in a premature stop codon at exon 10 and a truncated protein that removed all of the β-catenin (CTNNB1) binding motifs, thus activating the downstream T-cell transcription factor (Tcf) pathway. Exon 9a isoform was concomitantly downregulated. This finding emphasizes the necessity of examining the various isoforms of exon 9 to avoid clinical mismanagement and counseling based on just the mutation site by genomic DNA sequencing alone.


PLOS ONE | 2014

Systematic study on genetic and epimutational profile of a cohort of Amsterdam criteria-defined Lynch Syndrome in Singapore.

Yanqun Liu; Min Hoe Chew; Xue Wei Goh; Soo Yong Tan; Carol Loi; Yuen Ming Tan; Hai Yang Law; Poh Koon Koh; Choong Leong Tang

Background Germline defects of mismatch repair (MMR) genes underlie Lynch Syndrome (LS). We aimed to gain comprehensive genetic and epigenetic profiles of LS families in Singapore, which will facilitate efficient molecular diagnosis of LS in Singapore and the region. Methods Fifty nine unrelated families were studied. Mutations in exons, splice-site junctions and promoters of five MMR genes were scanned by high resolution melting assay followed by DNA sequencing, large fragment deletions/duplications and promoter methylation in MLH1, MSH2, MSH6 and PMS2 were evaluated by multiplex ligation-dependent probe amplification. Tumor microsatellite instability (MSI) was assessed with five mononucleotide markers and immunohistochemical staining (IHC) was also performed. Results Pathogenic defects, all confined to MLH1 and MSH2, were identified in 17 out of 59 (28.8%) families. The mutational spectrum was highly heterogeneous and 28 novel variants were identified. One recurrent mutation in MLH1 (c.793C>T) was also observed. 92.9% sensitivity for indication of germline mutations conferred by IHC surpassed 64.3% sensitivity by MSI. Furthermore, 15.6% patients with MSS tumors harbored pathogenic mutations. Conclusions Among major ethnic groups in Singapore, all pathogenic germline defects were confined to MLH1 and MSH2. Caution should be applied when the Amsterdam criteria and consensus microsatellite marker panel recommended in the revised Bethesda guidelines are applied to the local context. We recommend a screening strategy for the local LS by starting with tumor IHC and the hotspot mutation testing at MLH1 c.793C>T followed by comprehensive mutation scanning in MLH1 and MSH2 prior to proceeding to other MMR genes.

Collaboration


Dive into the Poh Koon Koh's collaboration.

Top Co-Authors

Avatar

Peh Yean Cheah

Singapore General Hospital

View shared research outputs
Top Co-Authors

Avatar

Eric Chun Yong Chan

National University of Singapore

View shared research outputs
Top Co-Authors

Avatar

Choong Leong Tang

Singapore General Hospital

View shared research outputs
Top Co-Authors

Avatar

Han Kiat Ho

National University of Singapore

View shared research outputs
Top Co-Authors

Avatar

Lee Cheng Phua

National University of Singapore

View shared research outputs
Top Co-Authors

Avatar

Carol Loi

Singapore General Hospital

View shared research outputs
Top Co-Authors

Avatar

Kong Weng Eu

Singapore General Hospital

View shared research outputs
Top Co-Authors

Avatar

Mainak Mal

National University of Singapore

View shared research outputs
Top Co-Authors

Avatar

Yu Hui Wong

Singapore General Hospital

View shared research outputs
Top Co-Authors

Avatar

Lai Fun Thean

Singapore General Hospital

View shared research outputs
Researchain Logo
Decentralizing Knowledge