Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Pohl Milón is active.

Publication


Featured researches published by Pohl Milón.


Proceedings of the National Academy of Sciences of the United States of America | 2006

The nucleotide-binding site of bacterial translation initiation factor 2 (IF2) as a metabolic sensor

Pohl Milón; E Tischenko; Jerneja Tomsic; Enrico Caserta; Gert E. Folkers; A. La Teana; Mv Rodnina; Cynthia L. Pon; Rolf Boelens; Claudio O. Gualerzi

Translational initiation factor 2 (IF2) is a guanine nucleotide-binding protein that can bind guanosine 3′,5′-(bis) diphosphate (ppGpp), an alarmone involved in stringent response in bacteria. In cells growing under optimal conditions, the GTP concentration is very high, and that of ppGpp very low. However, under stress conditions, the GTP concentration may decline by as much as 50%, and that of ppGpp can attain levels comparable to those of GTP. Here we show that IF2 binds ppGpp at the same nucleotide-binding site and with similar affinity as GTP. Thus, GTP and the alarmone ppGpp can be considered two alternative physiologically relevant IF2 ligands. ppGpp interferes with IF2-dependent initiation complex formation, severely inhibits initiation dipeptide formation, and blocks the initiation step of translation. Our data suggest that IF2 has the properties of a cellular metabolic sensor and regulator that oscillates between an active GTP-bound form under conditions allowing active protein syntheses and an inactive ppGpp-bound form when shortage of nutrients would be detrimental, if not accompanied by slackening of this synthesis.


PLOS Biology | 2011

The cryo-EM structure of a complete 30S translation initiation complex from Escherichia coli.

Patricia Julián; Pohl Milón; Xabier Agirrezabala; Gorka Lasso; David Gil; Marina V. Rodnina; Mikel Valle

Formation of the 30S initiation complex (30S IC) is an important checkpoint in regulation of gene expression. The selection of mRNA, correct start codon, and the initiator fMet-tRNAfMet requires the presence of three initiation factors (IF1, IF2, IF3) of which IF3 and IF1 control the fidelity of the process, while IF2 recruits fMet-tRNAfMet. Here we present a cryo-EM reconstruction of the complete 30S IC, containing mRNA, fMet-tRNAfMet, IF1, IF2, and IF3. In the 30S IC, IF2 contacts IF1, the 30S subunit shoulder, and the CCA end of fMet-tRNAfMet, which occupies a novel P/I position (P/I1). The N-terminal domain of IF3 contacts the tRNA, whereas the C-terminal domain is bound to the platform of the 30S subunit. Binding of initiation factors and fMet-tRNAfMet induces a rotation of the head relative to the body of the 30S subunit, which is likely to prevail through 50S subunit joining until GTP hydrolysis and dissociation of IF2 take place. The structure provides insights into the mechanism of mRNA selection during translation initiation.


Methods in Enzymology | 2007

Transient kinetics, fluorescence, and FRET in studies of initiation of translation in bacteria.

Pohl Milón; Andrey L. Konevega; Frank Peske; Attilio Fabbretti; Claudio O. Gualerzi; Marina V. Rodnina

Initiation of mRNA translation in prokaryotes requires the small ribosomal subunit (30S), initiator fMet-tRNA(fMet), three initiation factors, IF1, IF2, and IF3, and the large ribosomal subunit (50S). During initiation, the 30S subunit, in a complex with IF3, binds mRNA, IF1, IF2.GTP, and fMet-tRNA(fMet) to form a 30S initiation complex which then recruits the 50S subunit to yield a 70S initiation complex, while the initiation factors are released. Here we describe a transient kinetic approach to study the timing of elemental steps of 30S initiation complex formation, 50S subunit joining, and the dissociation of the initiation factors from the 70S initiation complex. Labeling of ribosomal subunits, fMet-tRNA(fMet), mRNA, and initiation factors with fluorescent reporter groups allows for the direct observation of the formation or dissociation of complexes by monitoring changes in the fluorescence of single dyes or fluorescence resonance energy transfer (FRET) between two fluorophores. Subunit joining was monitored by light scattering or by FRET between dyes attached to the ribosomal subunits. The kinetics of chemical steps, that is, GTP hydrolysis by IF2 and peptide bond formation following the binding of aminoacyl-tRNA to the 70S initiation complex, were measured by the quench-flow technique. The methods described here are based on results obtained with initiation components from Escherichia coli but can be adopted for mechanistic studies of initiation in other prokaryotic or eukaryotic systems.


Nature Structural & Molecular Biology | 2012

Real-time assembly landscape of bacterial 30S translation initiation complex

Pohl Milón; Cristina Maracci; Liudmila Filonava; Claudio O. Gualerzi; Marina V. Rodnina

Initiation factors guide the ribosome in the selection of mRNA and translational reading frame. We determined the kinetically favored assembly pathway of the 30S preinitiation complex (30S PIC), an early intermediate in 30S initiation complex formation in Escherichia coli. IF3 and IF2 are the first factors to arrive, forming an unstable 30S–IF2–IF3 complex. Subsequently, IF1 joins and locks the factors in a kinetically stable 30S PIC to which fMet-tRNAfMet is recruited. Binding of mRNA is independent of initiation factors and can take place at any time during 30S PIC assembly, depending on the cellular concentration of the mRNA and the structural determinants at the ribosome-binding site. The kinetic analysis shows both specific and cumulative effects of initiation factors as well as kinetic checkpoints of mRNA selection at the entry into translation.


EMBO Reports | 2010

The ribosome-bound initiation factor 2 recruits initiator tRNA to the 30S initiation complex.

Pohl Milón; Marcello Carotti; Andrey L. Konevega; Wolfgang Wintermeyer; Marina V. Rodnina; Claudio O. Gualerzi

Bacterial translation initiation factor 2 (IF2) is a GTPase that promotes the binding of the initiator fMet‐tRNAfMet to the 30S ribosomal subunit. It is often assumed that IF2 delivers fMet‐tRNAfMet to the ribosome in a ternary complex, IF2·GTP·fMet‐tRNAfMet. By using rapid kinetic techniques, we show here that binding of IF2·GTP to the 30S ribosomal subunit precedes and is independent of fMet‐tRNAfMet binding. The ternary complex formed in solution by IF2·GTP and fMet‐tRNA is unstable and dissociates before IF2·GTP and, subsequently, fMet‐tRNAfMet bind to the 30S subunit. Ribosome‐bound IF2 might accelerate the recruitment of fMet‐tRNAfMet to the 30S initiation complex by providing anchoring interactions or inducing a favourable ribosome conformation. The mechanism of action of IF2 seems to be different from that of tRNA carriers such as EF‐Tu, SelB and eukaryotic initiation factor 2 (eIF2), instead resembling that of eIF5B, the eukaryotic subunit association factor.


Critical Reviews in Biochemistry and Molecular Biology | 2012

Kinetic control of translation initiation in bacteria

Pohl Milón; Marina V. Rodnina

Translation initiation is a crucial step of protein synthesis which largely defines how the composition of the cellular transcriptome is converted to the proteome and controls the response and adaptation to environmental stimuli. The efficiency of translation of individual mRNAs, and hence the basal shape of the proteome, is defined by the structures of the mRNA translation initiation regions. Initiation efficiency can be regulated by small molecules, proteins, or antisense RNAs, underscoring its importance in translational control. Although initiation has been studied in bacteria for decades, many aspects remain poorly understood. Recent evidence has suggested an unexpected diversity of pathways by which mRNAs can be recruited to the bacterial ribosome, the importance of structural dynamics of initiation intermediates, and the complexity of checkpoints for mRNA selection. In this review, we discuss how the ribosome shapes the landscape of translation initiation by non-linear kinetic processing of the transcriptome information. We summarize the major pathways by which mRNAs enter the ribosome depending on the structure of their 5′ untranslated regions, the assembly and the structure of initiation intermediates, the individual and synergistic roles of initiation factors, and the mechanisms of mRNA and initiator tRNA selection.


Nucleic Acids Research | 2012

Impact of methylations of m2G966/m5C967 in 16S rRNA on bacterial fitness and translation initiation

Dmitry E. Burakovsky; Irina V. Prokhorova; Petr V. Sergiev; Pohl Milón; Olga V. Sergeeva; Alexey A. Bogdanov; Marina V. Rodnina; Olga A. Dontsova

The functional centers of the ribosome in all organisms contain ribosomal RNA (rRNA) modifications, which are introduced by specialized enzymes and come at an energy cost for the cell. Surprisingly, none of the modifications tested so far was essential for growth and hence the functional role of modifications is largely unknown. Here, we show that the methyl groups of nucleosides m2G966 and m5C967 of 16S rRNA in Escherichia coli are important for bacterial fitness. In vitro analysis of all phases of translation suggests that the m2G966/m5C967 modifications are dispensable for elongation, termination and ribosome recycling. Rather, the modifications modulate the early stages of initiation by stabilizing the binding of fMet-tRNAfMet to the 30S pre-initiation complex prior to start-codon recognition. We propose that the m2G966 and m5C967 modifications help shaping the bacterial proteome, most likely by fine-tuning the rates that determine the fate of a given messenger RNA (mRNA) at early checkpoints of mRNA selection.


FEBS Letters | 2012

Structural and functional characterization of the bacterial translocation inhibitor GE82832

Letizia Brandi; Sonia Maffioli; Stefano Donadio; Fabio Quaglia; Marco Sette; Pohl Milón; Claudio O. Gualerzi; Attilio Fabbretti

The structure of GE82832, a translocation inhibitor produced by a soil microorganism, is shown to be highly related to that of dityromycin, a bicyclodecadepsipeptide antibiotic discovered long ago whose characterization had never been pursued beyond its structural elucidation. GE82832 and dityromycin were shown to interfere with both aminoacyl‐tRNA and mRNA movement and with the Pi release occurring after ribosome‐ and EF‐G‐dependent GTP hydrolysis. These findings and the unusual ribosomal localization of GE82832/dityromycin near protein S13 suggest that the mechanism of inhibition entails an interference with the rotation of the 30S subunit “head” which accompanies the ribosome‐unlocking step of translocation.


Nucleic Acids Research | 2015

Directional transition from initiation to elongation in bacterial translation

Akanksha Goyal; Riccardo Belardinelli; Cristina Maracci; Pohl Milón; Marina V. Rodnina

The transition of the 30S initiation complex (IC) to the translating 70S ribosome after 50S subunit joining provides an important checkpoint for mRNA selection during translation in bacteria. Here, we study the timing and control of reactions that occur during 70S IC formation by rapid kinetic techniques, using a toolbox of fluorescence-labeled translation components. We present a kinetic model based on global fitting of time courses obtained with eight different reporters at increasing concentrations of 50S subunits. IF1 and IF3 together affect the kinetics of subunit joining, but do not alter the elemental rates of subsequent steps of 70S IC maturation. After 50S subunit joining, IF2-dependent reactions take place independent of the presence of IF1 or IF3. GTP hydrolysis triggers the efficient dissociation of fMet-tRNAfMet from IF2 and promotes the dissociation of IF2 and IF1 from the 70S IC, but does not affect IF3. The presence of non-hydrolyzable GTP analogs shifts the equilibrium towards a stable 70S–mRNA–IF1–IF2–fMet-tRNAfMet complex. Our kinetic analysis reveals the molecular choreography of the late stages in translation initiation.


RNA | 2012

Novel insights into the architecture and protein interaction network of yeast eIF3.

Sohail Khoshnevis; Florian Hauer; Pohl Milón; Holger Stark; Ralf Ficner

Translation initiation in eukaryotes is a multistep process requiring the orchestrated interaction of several eukaryotic initiation factors (eIFs). The largest of these factors, eIF3, forms the scaffold for other initiation factors, promoting their binding to the 40S ribosomal subunit. Biochemical and structural studies on eIF3 need highly pure eIF3. However, natively purified eIF3 comprise complexes containing other proteins such as eIF5. Therefore we have established in vitro reconstitution protocols for Saccharomyces cerevisiae eIF3 using its five recombinantly expressed and purified subunits. This reconstituted eIF3 complex (eIF3(rec)) exhibits the same size and activity as the natively purified eIF3 (eIF3(nat)). The homogeneity and stoichiometry of eIF3(rec) and eIF3(nat) were confirmed by analytical size exclusion chromatography, mass spectrometry, and multi-angle light scattering, demonstrating the presence of one copy of each subunit in the eIF3 complex. The reconstituted and native eIF3 complexes were compared by single-particle electron microscopy showing a high degree of structural conservation. The interaction network between eIF3 proteins was studied by means of limited proteolysis, analytical size exclusion chromatography, in vitro binding assays, and isothermal titration calorimetry, unveiling distinct protein domains and subcomplexes that are critical for the integrity of the protein network in yeast eIF3. Taken together, the data presented here provide a novel procedure to obtain highly pure yeast eIF3, suitable for biochemical and structural analysis, in addition to a detailed picture of the network of protein interactions within this complex.

Collaboration


Dive into the Pohl Milón's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Andrey L. Konevega

Petersburg Nuclear Physics Institute

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge