Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Polavarapu B. Kavi Kishor is active.

Publication


Featured researches published by Polavarapu B. Kavi Kishor.


Plant Cell and Environment | 2014

Is proline accumulation per se correlated with stress tolerance or is proline homeostasis a more critical issue

Polavarapu B. Kavi Kishor; Nese Sreenivasulu

Proline has been recognized as a multi-functional molecule, accumulating in high concentrations in response to a variety of abiotic stresses. It is able to protect cells from damage by acting as both an osmotic agent and a radical scavenger. Proline accumulated during a stress episode is degraded to provide a supply of energy to drive growth once the stress is relieved. Proline homeostasis is important for actively dividing cells as it helps to maintain sustainable growth under long-term stress. It also underpins the importance of the expansion of the proline sink during the transition from vegetative to reproductive growth and the initiation of seed development. Its role in the reproductive tissue is to stabilize seed set and productivity. Thus, to cope with abiotic stress, it is important to develop strategies to increase the proline sink in the reproductive tissue. We give a holistic account of proline homeostasis, taking into account the regulation of proline synthesis, its catabolism, and intra- and intercellular transport, all of which are vital components of growth and development in plants challenged by stress.


Plant Biotechnology Journal | 2012

Large-scale development of cost-effective SNP marker assays for diversity assessment and genetic mapping in chickpea and comparative mapping in legumes

Pavana J Hiremath; Ashish Kumar; Ramachandra Varma Penmetsa; Andrew D. Farmer; Jessica A. Schlueter; Siva K. Chamarthi; Adam M. Whaley; Noelia Carrasquilla-Garcia; Pooran M. Gaur; Hari D. Upadhyaya; Polavarapu B. Kavi Kishor; Trushar Shah; Douglas R. Cook; Rajeev K. Varshney

A set of 2486 single nucleotide polymorphisms (SNPs) were compiled in chickpea using four approaches, namely (i) Solexa/Illumina sequencing (1409), (ii) amplicon sequencing of tentative orthologous genes (TOGs) (604), (iii) mining of expressed sequence tags (ESTs) (286) and (iv) sequencing of candidate genes (187). Conversion of these SNPs to the cost-effective and flexible throughput Competitive Allele Specific PCR (KASPar) assays generated successful assays for 2005 SNPs. These marker assays have been designated as Chickpea KASPar Assay Markers (CKAMs). Screening of 70 genotypes including 58 diverse chickpea accessions and 12 BC3F2 lines showed 1341 CKAMs as being polymorphic. Genetic analysis of these data clustered chickpea accessions based on geographical origin. Genotyping data generated for 671 CKAMs on the reference mapping population (Cicer arietinum ICC 4958 × Cicer reticulatum PI 489777) were compiled with 317 unpublished TOG-SNPs and 396 published markers for developing the genetic map. As a result, a second-generation genetic map comprising 1328 marker loci including novel 625 CKAMs, 314 TOG-SNPs and 389 published marker loci with an average inter-marker distance of 0.59 cM was constructed. Detailed analyses of 1064 mapped loci of this second-generation chickpea genetic map showed a higher degree of synteny with genome of Medicago truncatula, followed by Glycine max, Lotus japonicus and least with Vigna unguiculata. Development of these cost-effective CKAMs for SNP genotyping will be useful not only for genetics research and breeding applications in chickpea, but also for utilizing genome information from other sequenced or model legumes.


PLOS ONE | 2014

Unraveling Regulation of the Small Heat Shock Proteins by the Heat Shock Factor HvHsfB2c in Barley: Its Implications in Drought Stress Response and Seed Development

Palakolanu Sudhakar Reddy; Polavarapu B. Kavi Kishor; Christiane Seiler; Markus Kuhlmann; Lennart Eschen-Lippold; Justin Lee; Malireddy K. Reddy; Nese Sreenivasulu

The rapid increase in heat shock proteins upon exposure to damaging stresses and during plant development related to desiccation events reveal their dual importance in plant development and stress tolerance. Genome-wide sequence survey identified 20 non-redundant small heat shock proteins (sHsp) and 22 heat shock factor (Hsf) genes in barley. While all three major classes (A, B, C) of Hsfs are localized in nucleus, the 20 sHsp gene family members are localized in different cell organelles like cytoplasm, mitochondria, plastid and peroxisomes. Hsf and sHsp members are differentially regulated during drought and at different seed developmental stages suggesting the importance of chaperone role under drought as well as seed development. In silico cis-regulatory motif analysis of Hsf promoters showed an enrichment with abscisic acid responsive cis-elements (ABRE), implying regulatory role of ABA in mediating transcriptional response of HvsHsf genes. Gene regulatory network analysis identified HvHsfB2c as potential central regulator of the seed-specific expression of several HvsHsps including 17.5CI sHsp. These results indicate that HvHsfB2c is co-expressed in the central hub of small Hsps and therefore it may be regulating the expression of several HvsHsp subclasses HvHsp16.88-CI, HvHsp17.5-CI and HvHsp17.7-CI. The in vivo relevance of binding specificity of HvHsfB2C transcription factor to HSE-element present in the promoter of HvSHP17.5-CI under heat stress exposure is confirmed by gel shift and LUC-reporter assays. Further, we isolated 477 bp cDNA from barley encoding a 17.5 sHsp polypeptide, which was predominantly upregulated under drought stress treatments and also preferentially expressed in developing seeds. Recombinant HvsHsp17.5-CI protein was expressed in E. coli and purified to homogeneity, which displayed in vitro chaperone activity. The predicted structural model of HvsHsp-17.5-CI protein suggests that the α-crystallin domain is evolutionarily highly conserved.


Frontiers in Plant Science | 2015

Role of proline in cell wall synthesis and plant development and its implications in plant ontogeny

Polavarapu B. Kavi Kishor; P. Hima Kumari; M. S. L. Sunita; Nese Sreenivasulu

Proline is a proteogenic amino acid and accumulates both under stress and non-stress conditions as a beneficial solute in plants. Recent discoveries point out that proline plays an important role in plant growth and differentiation across life cycle. It is a key determinant of many cell wall proteins that plays important roles in plant development. The role of extensins, arabinogalactan proteins and hydroxyproline- and proline-rich proteins as important components of cell wall proteins that play pivotal roles in cell wall signal transduction cascades, plant development and stress tolerance is discussed in this review. Molecular insights are also provided here into the plausible roles of proline transporters modulating key events in plant development. In addition, the roles of proline during seed developmental transitions including storage protein synthesis are discussed.


Journal of Plant Physiology | 2014

Salt tolerance and activity of antioxidative enzymes of transgenic finger millet overexpressing a vacuolar H(+)-pyrophosphatase gene (SbVPPase) from Sorghum bicolor.

Ediga Anjaneyulu; Palle Surender Reddy; Merla Srilakshmi Sunita; Polavarapu B. Kavi Kishor; Balaji Meriga

A vacuolar proton pyrophosphatase cDNA clone was isolated from Sorghum bicolor (SbVPPase) using end-to-end gene-specific primer amplification. It showed 80-90% homology at the nucleotide and 85-95% homology at the amino acid level with other VPPases. The gene was introduced into expression vector pCAMBIA1301 under the control of the cauliflower mosaic virus 35S (CaMV35S) promoter and transformed into Agrobacterium tumifaciens strain LBA4404 to infect embryogenic calli of finger millet (Eleusine coracana). Successful transfer of SbVPPase was confirmed by a GUS histochemical assay and PCR analysis. Both, controls and transgenic plants were subjected to 100 and 200mM NaCl and certain biochemical and physiological parameters were studied. Relative water content (RWC), plant height, leaf expansion, finger length and width and grain weight were severely reduced (50-70%), and the flowering period was delayed by 20% in control plants compared to transgenic plants under salinity stress. With increasing salt stress, the proline and chlorophyll contents as well as the enzyme activities of superoxide dismutase (SOD), catalase (CAT), ascorbate peroxidase (APX), guaiacol peroxidase (GPX) and glutathione reductase (GR) increased by 25-100% in transgenics, while malondialdehyde (MDA) showed a 2-4-fold decrease. The increased activities of antioxidant enzymes and the reduction in the MDA content suggest efficient scavenging of reactive oxygen species (ROS) in transgenics and, as a consequence, probably alleviation of salt stress. Also, the leaf tissues of the transgenics accumulated 1.5-2.5-fold higher Na(+) and 0.4-0.8-fold higher K(+) levels. Together, these results clearly demonstrate that overexpression of SbVPPase in transgenic finger millet enhances the plants performance under salt stress.


BMC Pharmacology | 2010

Protective efficacy of natansnin, a dibenzoyl glycoside from Salvinia natans against CCl4 induced oxidative stress and cellular degeneration in rat liver

Polimetla Srilaxmi; Gangadhara Reddy Sareddy; Polavarapu B. Kavi Kishor; Oruganti H. Setty; Phanithi Prakash Babu

BackgroundCarbon tetra chloride (CCl4), an industrial solvent, is a hepatotoxic agent and it is the well established animal model for free radical-induced liver injury. The present investigation was carried out to establish the protective effect of natansnin, a novel dibenzoyl glycoside from Salvinia natans against CCl4 induced oxidative stress and cellular degeneration in rat liver.ResultsCCl4 significantly increased the levels of lipid peroxides, oxidized glutathione and decreased the levels of reduced glutathione, SOD and CAT. CCl4 induce marked histopathological changes and increase in the levels of apoptotic proteins. CCl4 treatment significantly increased the levels of apoptotic proteins such as caspases-3, PARP, Bax, Bid and cytochrome C and also increased the levels of inflammatory mediators iNos and Cox-2. Natansnin treatment significantly decreased the levels of CCl4 induced apoptotic proteins and inflammatory mediators. Further natansinin treatment significantly inhibited the CCl4 induced apoptosis which was evident form the reduced TUNEL positive cells.ConclusionsIn conclusion, our study demonstrated the protective effect of natansnin against CCl4 induced oxidative stress and cellular degeneration in rat liver tissue. This protective effect of natansnin can be correlated to its direct antioxidant effect.


Frontiers in Plant Science | 2015

Staying Alive or Going to Die During Terminal Senescence—An Enigma Surrounding Yield Stability

Krishna S.V. Jagadish; Polavarapu B. Kavi Kishor; Rajeev N. Bahuguna; Nicolaus von Wirén; Nese Sreenivasulu

Breeding programs with the aim to enhance yield productivity under abiotic stress conditions during the reproductive stage of crops is a top priority in the era of climate change. However, the choice of exploring stay-green or senescence phenotypes, which represent an opposing physiological bearing, are explored in cereal breeding programs for enhanced yield stability to a different extent. Thus, the consideration of stay-green or senescence phenotypes is still an ongoing debate and has not been comprehensively addressed. In this review, we provide arguments for designing a target phenotype to mitigate abiotic stresses during pre- and post-anthesis in cereals with a focus on hormonal balances regulating stay-green phenotype versus remobilization. The two major hypothesis for grain yield improvement are (i) the importance of the stay-green trait to elevate grain number under pre-anthesis and anthesis stress and (ii) fine tuning the regulatory and molecular physiological mechanisms to accelerate nutrient remobilization to optimize grain quality and seed weight under post-anthesis stress. We highlight why a cautious balance in the phenotype design is essential. While stay-green phenotypes promise to be ideal for developing stress-tolerant lines during pre-anthesis and fertilization to enhance grain number and yield per se, fine-tuning efficient remobilizing behavior during seed filling might optimize grain weight, grain quality and nutrient efficiency. The proposed model provides novel and focused directions for cereal stress breeding programs to ensure better seed-set and efficient grain-filling in cereals under terminal drought and heat stress exposure.


Frontiers in Plant Science | 2015

Quantitative genetic analysis of agronomic and morphological traits in sorghum, Sorghum bicolor.

Riyazaddin Mohammed; Ashok Kumar Are; Ramaiah Bhavanasi; Rajendra S. Munghate; Polavarapu B. Kavi Kishor; H. C. Sharma

The productivity in sorghum is low, owing to various biotic and abiotic constraints. Combining insect resistance with desirable agronomic and morphological traits is important to increase sorghum productivity. Therefore, it is important to understand the variability for various agronomic traits, their heritabilities and nature of gene action to develop appropriate strategies for crop improvement. Therefore, a full diallel set of 10 parents and their 90 crosses including reciprocals were evaluated in replicated trials during the 2013–14 rainy and postrainy seasons. The crosses between the parents with early- and late-flowering flowered early, indicating dominance of earliness for anthesis in the test material used. Association between the shoot fly resistance, morphological, and agronomic traits suggested complex interactions between shoot fly resistance and morphological traits. Significance of the mean sum of squares for GCA (general combining ability) and SCA (specific combining ability) of all the studied traits suggested the importance of both additive and non-additive components in inheritance of these traits. The GCA/SCA, and the predictability ratios indicated predominance of additive gene effects for majority of the traits studied. High broad-sense and narrow-sense heritability estimates were observed for most of the morphological and agronomic traits. The significance of reciprocal combining ability effects for days to 50% flowering, plant height and 100 seed weight, suggested maternal effects for inheritance of these traits. Plant height and grain yield across seasons, days to 50% flowering, inflorescence exsertion, and panicle shape in the postrainy season showed greater specific combining ability variance, indicating the predominance of non-additive type of gene action/epistatic interactions in controlling the expression of these traits. Additive gene action in the rainy season, and dominance in the postrainy season for days to 50% flowering and plant height suggested G X E interactions for these traits.


Frontiers in Plant Science | 2017

Overexpression of a Plasma Membrane Bound Na+/H+ Antiporter-Like Protein (SbNHXLP) Confers Salt Tolerance and Improves Fruit Yield in Tomato by Maintaining Ion Homeostasis

P. Hima Kumari; S. Anil Kumar; Pramod Sivan; Ramesh Katam; Prashanth Suravajhala; Krothapalli Raja Surya Sambasiva Rao; Rajeev K. Varshney; Polavarapu B. Kavi Kishor

A Na+/H+ antiporter-like protein (NHXLP) was isolated from Sorghum bicolor L. (SbNHXLP) and validated by overexpressing in tomato for salt tolerance. Homozygous T2 transgenic lines when evaluated for salt tolerance, accumulated low Na+ and displayed enhanced salt tolerance compared to wild-type plants (WT). This is consistent with the amiloride binding assay of the protein. Transgenics exhibited higher accumulation of proline, K+, Ca2+, improved cambial conductivity, higher PSII, and antioxidative enzyme activities than WT. Fluorescence imaging results revealed lower Na+ and higher Ca2+ levels in transgenic roots. Co-immunoprecipitation experiments demonstrate that SbNHXLP interacts with a Solanum lycopersicum cation proton antiporter protein2 (SlCHX2). qRT-PCR results showed upregulation of SbNHXLP and SlCHX2 upon treatment with 200 mM NaCl and 100 mM potassium nitrate. SlCHX2 is known to be involved in K+ acquisition, and the interaction between these two proteins might help to accumulate more K+ ions, and thus maintain ion homeostasis. These results strongly suggest that plasma membrane bound SbNHXLP involves in Na+ exclusion, maintains ion homeostasis in transgenics in comparison with WT and alleviates NaCl stress.


Archive | 2018

Deploying Mechanisms Adapted by Halophytes to Improve Salinity Tolerance in Crop Plants: Focus on Anatomical Features, Stomatal Attributes, and Water Use Efficiency

Ankanagari Srinivas; Guddimalli Rajasheker; Gandra Jawahar; Punita L. Devineni; Maheshwari Parveda; Somanaboina Anil Kumar; Polavarapu B. Kavi Kishor

Nearly 1200 million hectares of land is affected by salinity throughout the world, and it is increasing year after year. It is one of the major causes that threaten our crop productivity at a time when we need to meet our growing food demands with limited land and freshwater resources. This leaves us but to understand the complex salinity tolerance mechanisms adapted by halophytic species especially their stomatal conductance (gs), epidermal salt bladders, and water use efficiency (WUE) and to utilize the candidate genes associated with them in crop plants for better tolerance and crop productivity.

Collaboration


Dive into the Polavarapu B. Kavi Kishor's collaboration.

Top Co-Authors

Avatar

Nese Sreenivasulu

International Rice Research Institute

View shared research outputs
Top Co-Authors

Avatar

T. D. Nikam

Savitribai Phule Pune University

View shared research outputs
Top Co-Authors

Avatar

Mahendra Laxman Ahire

Savitribai Phule Pune University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Varsha Shriram

Savitribai Phule Pune University

View shared research outputs
Top Co-Authors

Avatar

Vinay Kumar

Savitribai Phule Pune University

View shared research outputs
Top Co-Authors

Avatar

H. C. Sharma

International Crops Research Institute for the Semi-Arid Tropics

View shared research outputs
Top Co-Authors

Avatar

Rajeev K. Varshney

International Crops Research Institute for the Semi-Arid Tropics

View shared research outputs
Top Co-Authors

Avatar

Rajendra S. Munghate

International Crops Research Institute for the Semi-Arid Tropics

View shared research outputs
Top Co-Authors

Avatar

Krishna S.V. Jagadish

International Rice Research Institute

View shared research outputs
Researchain Logo
Decentralizing Knowledge