Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Polynikis Kaimakis is active.

Publication


Featured researches published by Polynikis Kaimakis.


Cell Stem Cell | 2010

Combinatorial Transcriptional Control In Blood Stem/Progenitor Cells: Genome-wide Analysis of Ten Major Transcriptional Regulators

Nicola K. Wilson; Samuel D. Foster; Xiaonan Wang; Kathy Knezevic; Judith Schütte; Polynikis Kaimakis; Paulina M. Chilarska; Sarah Kinston; Willem H. Ouwehand; Elaine Dzierzak; John E. Pimanda; Marella de Bruijn; Berthold Göttgens

Combinatorial transcription factor (TF) interactions control cellular phenotypes and, therefore, underpin stem cell formation, maintenance, and differentiation. Here, we report the genome-wide binding patterns and combinatorial interactions for ten key regulators of blood stem/progenitor cells (SCL/TAL1, LYL1, LMO2, GATA2, RUNX1, MEIS1, PU.1, ERG, FLI-1, and GFI1B), thus providing the most comprehensive TF data set for any adult stem/progenitor cell type to date. Genome-wide computational analysis of complex binding patterns, followed by functional validation, revealed the following: first, a previously unrecognized combinatorial interaction between a heptad of TFs (SCL, LYL1, LMO2, GATA2, RUNX1, ERG, and FLI-1). Second, we implicate direct protein-protein interactions between four key regulators (RUNX1, GATA2, SCL, and ERG) in stabilizing complex binding to DNA. Third, Runx1(+/-)::Gata2(+/-) compound heterozygous mice are not viable with severe hematopoietic defects at midgestation. Taken together, this study demonstrates the power of genome-wide analysis in generating novel functional insights into the transcriptional control of stem and progenitor cells.


Cell Stem Cell | 2009

Human Placenta Is a Potent Hematopoietic Niche Containing Hematopoietic Stem and Progenitor Cells throughout Development

Catherine Robin; Karine Bollerot; Sandra S.C. Mendes; Esther Haak; Mihaela Crisan; Francesco F. Cerisoli; Ivoune I. Lauw; Polynikis Kaimakis; Ruud R.J.J. Jorna; Mark Vermeulen; Manfred Kayser; Reinier van der Linden; Parisa Imanirad; Monique M.A. Verstegen; Humaira H. Nawaz-Yousaf; Natalie Papazian; Eric A.P. Steegers; Elaine Dzierzak

Hematopoietic stem cells (HSCs) are responsible for the life-long production of the blood system and are pivotal cells in hematologic transplantation therapies. During mouse and human development, the first HSCs are produced in the aorta-gonad-mesonephros region. Subsequent to this emergence, HSCs are found in other anatomical sites of the mouse conceptus. While the mouse placenta contains abundant HSCs at midgestation, little is known concerning whether HSCs or hematopoietic progenitors are present and supported in the human placenta during development. In this study we show, over a range of developmental times including term, that the human placenta contains hematopoietic progenitors and HSCs. Moreover, stromal cell lines generated from human placenta at several developmental time points are pericyte-like cells and support human hematopoiesis. Immunostaining of placenta sections during development localizes hematopoietic cells in close contact with pericytes/perivascular cells. Thus, the human placenta is a potent hematopoietic niche throughout development.


Journal of Experimental Medicine | 2013

Gata2 is required for HSC generation and survival

Emma de Pater; Polynikis Kaimakis; Chris S. Vink; Tomomasa Yokomizo; Tomoko Yamada-Inagawa; Reinier van der Linden; Parham Solaimani Kartalaei; Sally A. Camper; Nancy A. Speck; Elaine Dzierzak

GATA2 function is essential for the generation of HSCs during the stage of endothelial-to-hematopoietic cell transition and thereafter for HSC survival


Nucleic Acids Research | 2007

FINDbase: a relational database recording frequencies of genetic defects leading to inherited disorders worldwide

Sjozef van Baal; Polynikis Kaimakis; Manyphong Phommarinh; Daphne Koumbi; Harry Cuppens; Francesca Riccardino; Milan Macek; Charles R. Scriver; George P. Patrinos

Frequency of INherited Disorders database (FINDbase) () is a relational database, derived from the ETHNOS software, recording frequencies of causative mutations leading to inherited disorders worldwide. Database records include the population and ethnic group, the disorder name and the related gene, accompanied by links to any corresponding locus-specific mutation database, to the respective Online Mendelian Inheritance in Man entries and the mutation together with its frequency in that population. The initial information is derived from the published literature, locus-specific databases and genetic disease consortia. FINDbase offers a user-friendly query interface, providing instant access to the list and frequencies of the different mutations. Query outputs can be either in a table or graphical format, accompanied by reference(s) on the data source. Registered users from three different groups, namely administrator, national coordinator and curator, are responsible for database curation and/or data entry/correction online via a password-protected interface. Databaseaccess is free of charge and there are no registration requirements for data querying. FINDbase provides a simple, web-based system for population-based mutation data collection and retrieval and can serve not only as a valuable online tool for molecular genetic testing of inherited disorders but also as a non-profit model for sustainable database funding, in the form of a ‘database-journal’.


Stem Cell Research | 2014

HIF1α is a regulator of hematopoietic progenitor and stem cell development in hypoxic sites of the mouse embryo

Parisa Imanirad; Parham Solaimani Kartalaei; Mihaela Crisan; Chris S. Vink; Tomoko Yamada-Inagawa; Emma de Pater; Dorota Kurek; Polynikis Kaimakis; Reinier van der Linden; Nancy A. Speck; Elaine Dzierzak

Hypoxia affects many physiologic processes during early stages of mammalian ontogeny, particularly placental and vascular development. In the adult, the hypoxic bone marrow microenvironment plays a role in regulating hematopoietic stem cell (HSC) function. HSCs are generated from the major vasculature of the embryo, but whether the hypoxic response affects the generation of these HSCs is as yet unknown. Here we examined whether Hypoxia Inducible Factor1-alpha (HIF1α), a key modulator of the response to hypoxia, is essential for HSC development. We found hypoxic cells in embryonic tissues that generate and expand hematopoietic cells (aorta, placenta and fetal liver), and specifically aortic endothelial and hematopoietic cluster cells. A Cre/loxP conditional knockout (cKO) approach was taken to delete HIF1α in Vascular Endothelial-Cadherin expressing endothelial cells, the precursors to definitive hematopoietic cells. Functional assays show that HSC and hematopoietic progenitor cells (HPCs) are significantly reduced in cKO aorta and placenta. Moreover, decreases in phenotypic aortic hematopoietic cluster cells in cKO embryos indicate that HIF1α is necessary for generation and/or expansion of HPCs and HSCs. cKO adult BM HSCs are also affected under transplantation conditions. Thus, HIF1α is a regulator of HSC generation and function beginning at the earliest embryonic stages.


Blood | 2016

Functional and molecular characterization of mouse Gata2-independent hematopoietic progenitors.

Polynikis Kaimakis; Emma de Pater; Christina Eich; Parham Solaimani Kartalaei; Mari-Liis Kauts; Chris S. Vink; Reinier van der Linden; Martine Jaegle; Tomomasa Yokomizo; Dies Meijer; Elaine Dzierzak

The Gata2 transcription factor is a pivotal regulator of hematopoietic cell development and maintenance, highlighted by the fact that Gata2 haploinsufficiency has been identified as the cause of some familial cases of acute myelogenous leukemia/myelodysplastic syndrome and in MonoMac syndrome. Genetic deletion in mice has shown that Gata2 is pivotal to the embryonic generation of hematopoietic stem cells (HSCs) and hematopoietic progenitor cells (HPCs). It functions in the embryo during endothelial cell to hematopoietic cell transition to affect hematopoietic cluster, HPC, and HSC formation. Gata2 conditional deletion and overexpression studies show the importance of Gata2 levels in hematopoiesis, during all developmental stages. Although previous studies of cell populations phenotypically enriched in HPCs and HSCs show expression of Gata2, there has been no direct study of Gata2 expressing cells during normal hematopoiesis. In this study, we generate a Gata2Venus reporter mouse model with unperturbed Gata2 expression to examine the hematopoietic function and transcriptome of Gata2 expressing and nonexpressing cells. We show that all the HSCs are Gata2 expressing. However, not all HPCs in the aorta, vitelline and umbilical arteries, and fetal liver require or express Gata2. These Gata2-independent HPCs exhibit a different functional output and genetic program, including Ras and cyclic AMP response element-binding protein pathways and other Gata factors, compared with Gata2-dependent HPCs. Our results, indicating that Gata2 is of major importance in programming toward HSC fate but not in all cells with HPC fate, have implications for current reprogramming strategies.


Journal of Experimental Medicine | 2018

In vivo single cell analysis reveals Gata2 dynamics in cells transitioning to hematopoietic fate

Christina Eich; Jochen Arlt; Chris S. Vink; Parham Solaimani Kartalaei; Polynikis Kaimakis; Samanta A. Mariani; Reinier van der Linden; Wiggert A. van Cappellen; Elaine Dzierzak

Cell fate is established through coordinated gene expression programs in individual cells. Regulatory networks that include the Gata2 transcription factor play central roles in hematopoietic fate establishment. Although Gata2 is essential to the embryonic development and function of hematopoietic stem cells that form the adult hierarchy, little is known about the in vivo expression dynamics of Gata2 in single cells. Here, we examine Gata2 expression in single aortic cells as they establish hematopoietic fate in Gata2Venus mouse embryos. Time-lapse imaging reveals rapid pulsatile level changes in Gata2 reporter expression in cells undergoing endothelial-to-hematopoietic transition. Moreover, Gata2 reporter pulsatile expression is dramatically altered in Gata2+/− aortic cells, which undergo fewer transitions and are reduced in hematopoietic potential. Our novel finding of dynamic pulsatile expression of Gata2 suggests a highly unstable genetic state in single cells concomitant with their transition to hematopoietic fate. This reinforces the notion that threshold levels of Gata2 influence fate establishment and has implications for transcription factor–related hematologic dysfunctions.


Stem cell reports | 2018

In Vitro Differentiation of Gata2 and Ly6a Reporter Embryonic Stem Cells Corresponds to In Vivo Waves of Hematopoietic Cell Generation

Mari-Liis Kauts; Carmen Rodríguez-Seoane; Polynikis Kaimakis; Sandra C. Mendes; Xabier Cortés-Lavaud; Undine Hill; Elaine Dzierzak

Summary In vivo hematopoietic generation occurs in waves of primitive and definitive cell emergence. Differentiation cultures of pluripotent embryonic stem cells (ESCs) offer an accessible source of hematopoietic cells for blood-related research and therapeutic strategies. However, despite many approaches, it remains a goal to robustly generate hematopoietic progenitor and stem cells (HP/SCs) in vitro from ESCs. This is partly due to the inability to efficiently promote, enrich, and/or molecularly direct hematopoietic emergence. Here, we use Gata2Venus (G2V) and Ly6a(SCA1)GFP (LG) reporter ESCs, derived from well-characterized mouse models of HP/SC emergence, to show that during in vitro differentiation they report emergent waves of primitive hematopoietic progenitor cells (HPCs), definitive HPCs, and B-lymphoid cell potential. These results, facilitated by enrichment of single and double reporter cells with HPC properties, demonstrate that in vitro ESC differentiation approximates the waves of hematopoietic cell generation found in vivo, thus raising possibilities for enrichment of rare ESC-derived HP/SCs.


Stem cell reports | 2018

Rapid Mast Cell Generation from Gata2 Reporter Pluripotent Stem Cells

Mari-Liis Kauts; Bianca De Leo; Carmen Rodríguez-Seoane; Roger Ronn; Fokion Glykofrydis; Antonio Maglitto; Polynikis Kaimakis; Margarita Basi; Helen Taylor; Lesley M. Forrester; Adam C. Wilkinson; Berthold Göttgens; Philippa T. K. Saunders; Elaine Dzierzak

Summary Mast cells are tissue-resident immune cells. Their overgrowth/overactivation results in a range of common distressing, sometimes life-threatening disorders, including asthma, psoriasis, anaphylaxis, and mastocytosis. Currently, drug discovery is hampered by use of cancer-derived mast cell lines or primary cells. Cell lines provide low numbers of mature mast cells and are not representative of in vivo mast cells. Mast cell generation from blood/bone marrow gives poor reproducibility, requiring 8–12 weeks of culture. Here we report a method for the rapid/robust production of mast cells from pluripotent stem cells (PSCs). An advantageous Gata2Venus reporter enriches mast cells and progenitors as they differentiate from PSCs. Highly proliferative mouse mast cells and progenitors emerge after 2 weeks. This method is applicable for rapid human mast cell generation, and could enable the production of sufficient numbers of physiologically relevant human mast cells from patient induced PSCs for the study of mast cell-associated disorders and drug discovery.


Human Mutation | 2007

HbVar Database of Human Hemoglobin Variants and Thalassemia Mutations: 2007 Update

Belinda Giardine; Sjozef van Baal; Polynikis Kaimakis; Cathy Riemer; Webb Miller; Maria Samara; Panagoula Kollia; Nicholas P. Anagnou; David H.K. Chui; Henri Wajcman; Ross C. Hardison; George P. Patrinos

Collaboration


Dive into the Polynikis Kaimakis's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Emma de Pater

Erasmus University Rotterdam

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Chris S. Vink

Erasmus University Rotterdam

View shared research outputs
Top Co-Authors

Avatar

Mari-Liis Kauts

Erasmus University Rotterdam

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Nancy A. Speck

University of Pennsylvania

View shared research outputs
Top Co-Authors

Avatar

Christina Eich

Erasmus University Rotterdam

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Mihaela Crisan

Erasmus University Rotterdam

View shared research outputs
Researchain Logo
Decentralizing Knowledge