Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Polyxenie E. Spoerri is active.

Publication


Featured researches published by Polyxenie E. Spoerri.


Nature Medicine | 2002

Adult hematopoietic stem cells provide functional hemangioblast activity during retinal neovascularization.

Maria B. Grant; W. Stratford May; Sergio Caballero; Gary A. J. Brown; Steven M. Guthrie; Robert N. Mames; Barry J. Byrne; Timothy Vaught; Polyxenie E. Spoerri; Ammon B. Peck; Edward W. Scott

Adults maintain a reservoir of hematopoietic stem cells that can enter the circulation to reach organs in need of regeneration. We developed a novel model of retinal neovascularization in adult mice to examine the role of hematopoietic stem cells in revascularizing ischemic retinas. Adult mice were durably engrafted with hematopoietic stem cells isolated from transgenic mice expressing green fluorescent protein. We performed serial long-term transplants, to ensure activity arose from self-renewing stem cells, and single hematopoietic stem-cell transplants to show clonality. After durable hematopoietic engraftment was established, retinal ischemia was induced to promote neovascularization. Our results indicate that self-renewing adult hematopoietic stem cells have functional hemangioblast activity, that is, they can clonally differentiate into all hematopoietic cell lineages as well as endothelial cells that revascularize adult retina. We also show that recruitment of endothelial precursors to sites of ischemic injury has a significant role in neovascularization.


Expert Opinion on Investigational Drugs | 2004

The role of growth factors in the pathogenesis of diabetic retinopathy.

Maria B. Grant; Aqeela Afzal; Polyxenie E. Spoerri; Hao Pan; Lynn C. Shaw; Robert N. Mames

Diabetic retinopathy (DR) is the most severe of several ocular complications of diabetes. The earliest clinical signs of DR are microaneurysms and haemorrhages. Later signs include dilated, tortuous irregular veins and retinal non-profusion, leading to retinal ischaemia that ultimately results in neovascularisation. Diabetic macular oedema, which involves the breakdown of the blood–retinal barrier, also occurs and is responsible for a major part of vision loss, particularly in Type 2 diabetes. The pathogenesis of DR is very complex. Many biochemical mechanisms have been proposed as explanations for the development and progression of DR. Chronic hyperglycaemia leads to oxidative injury, microthrombi formation, cell adhesion molecule activation, leukostasis and cytokine activation. Next, ischaemia-mediated overexpression of growth factors and cytokines occurs. These factors include vascular endothelial growth factor, insulin-like growth factor-1, angiopoetin-1 and -2, stromal-derived factor-1, fibroblast growth factor-2 and tumour necrosis factor. Because of the complex interplay between these factors, targeting a single growth factor will be unlikely to result in therapeutic inhibition of angiogenesis. These growth factors no doubt act in synergy to mediate the steps of angiogenesis, including protease production, endothelial cell proliferation, migration and tube formation. This review attempts to provide an overview of perspectives regarding the pathogenesis of this disease. The focus, however, is on describing the unique features of selected relevant factors and how each growth factor may act in a synergistic manner with other factors.


Diabetes | 1998

Fibronectin Fragments Modulate Human Retinal Capillary Cell Proliferation and Migration

Maria B. Grant; Sergio Caballero; David M Bush; Polyxenie E. Spoerri

Capillary morphogenesis involves cell-cell and cellmatrix interactions. Proteases elaborated by capillary cells modify the extracellular matrix (ECM) to facilitate capillary tube formation. Previously, we detected the presence of fibronectin fragments (Fn-f) associated with the proform of matrix metalloprotease-2 (MMP-2) in conditioned medium of human retinal endothelial cells (HRECs). Association of this fragment to latent MMP-2 prevented autocatalytic activation of MMP-2, suggesting a modulatory role of Fn-f in MMP-2 activation. In this report, we examined the potential role of Fn-f on two processes involved in angiogenesis, proliferation and migration of vascular cells. The effects of Fn-f on proliferation were determined by DNA synthesis and cell counts. Their effects on migration were assessed using modified Boyden chambers. Seven Fn-f were tested on vascular cell migration and/or proliferation. Three Fn-f induced migration. Fn-f of 30-kDa and 120-kDa size positively affected proliferation of microvascular cells but not macrovascular cells. A 45-kDa gelatin binding fragment of Fn inhibited HREC proliferation but stimulated pericyte and smooth muscle cell proliferation. The potency of these fragments exceeded that of the known angiogenic growth factor, basic fibroblast growth factor (bFGF), on HREC migration. ECM components such as fibronectin may influence capillary morphogenesis by the generation of fragments that can modulate proliferation, migration, and protease activation. In the setting of diabetes, excess Fn is generated and is available for degradation. Thus, the production of Fn-f may be specifically relevant to the angiogenesis observed in proliferative diabetic retinopathy.


Regulatory Peptides | 1996

Expression of IGF-I, IGF-I receptor and IGF binding proteins - 1, -2, -3, -4 and -5 in human atherectomy specimens

Maria B. Grant; Thomas J. Wargovich; Ea Ellis; Roy W. Tarnuzzer; Sergio Caballero; K Estes; M Rossing; Polyxenie E. Spoerri; Carl J. Pepine

The molecular and cellular processes that induce rapid atherosclerotic plaque progression in patients with unstable angina and initiate restenosis following coronary interventional procedures are uncertain. We examined primary (de novo) and restenotic lesions retrieved at the time of directional coronary atherectomy for expression of insulin-like-growth factor-I (IGF-I). IGF-I receptor, and five IGF binding proteins (IGFBPs), IGFBP-1, IGFBP-2, IGFBP-3, IGFBP-4, and IGFBP-5 in smooth muscle cells (SMCs) using colloidal gold immunocytochemistry. IGF-1, its receptor and binding proteins were not detected in SMCs of normal coronary arteries. IGF-I localized primarily in synthetic smooth muscle cells (sSMCs) in both de novo and restenotic plaques. IGF-I receptor localized on sSMCs and their processes and colocalized with IGF-I. Although morphometric analysis of IGF-I and IGF-I receptor immunoreactivity in sSMCs of de novo and restenotic lesions showed comparable levels of IGF-I (3.2 +/- 1.0 and 2.9 +/- 0.9, respectively). IGF-I receptor was significantly higher in de novo lesions as compared to restenotic lesions (10.7 +/- 2.5 and 4.2 +/- 1.3, P < 0.05, respectively). IGFBP-1, IGFBP-2, IGFBP-3, IGFBP-4 and IGFBP-5 localized in the cytoplasm of sSMCs and in the extracellular matrix. Quantitative reverse transcription polymerase chain reaction (QRT-PCR) performed on de novo atherectomy specimens identified mRNA for IGF-I, IGF-I receptor, IGFBP-1, IGFBP-2, IGFBP-4, IGFBP-5 levels and detected mRNA for IGFBP-3. The expression of IGF-I, IGF-I receptor, and IGFBPs in atherectomy plaques suggests that the development of coronary obstructive lesions may be a result of changes in the IGF system.


Diabetes | 1998

Matrix metalloproteinase expression in human retinal microvascular cells.

Maria B. Grant; Sergio Caballero; Roy W. Tarnuzzer; Kathryn E Bass; Alexander V. Ljubimov; Polyxenie E. Spoerri; Richard E Galardy

The degree of hyperglycemia correlates with the development of diabetic retinopathy. We investigated the effect of glucose on the expression of matrix metalloproteinase (MMP)-2 and MMP-9 (72-kDa and 92-kDa type IV collagenases, respectively) by human retinal microvascular endothelial cells (HRECs). Cultured HRECs from nondiabetic and diabetic donors were exposed to 5 or 30 mmol/l glucose. Using gelatin zymography, conditioned medium (CM) from all cultures revealed a gelatinolytic band migrating at 65 kDa (representing the proform of MMP-2 that runs at 72 kDa under reducing conditions). This band was unchanged by glucose exposure or the disease state of the donors. CM from nondiabetic HREC cultures demonstrated an additional proteolytic activity migrating at 90 kDa when cells were exposed to 30 mmol/l glucose, but not when they were exposed to 5 mmol/l glucose. This same activity was seen in CM from HREC cultures of diabetic origin in the presence of both 5 and 30 mmol/l glucose. Western analysis confirmed the identity of the 65-kDa band as MMP-2. The anomalous activity at 90 kDa was identified as MMP-2 associated and co-migrating with a fibronectin fragment. Competition-based reverse transcription-polymerase chain reaction revealed that nondiabetic and diabetic HRECs expressed constitutively mRNA for MMP-2, MMP-9, tissue inhibitor of metalloproteinase (TIMP)-1, TIMP-2, and fibronectin. After exposure to 5 or 30 mmol/l glucose, no changes were detected in mRNA levels in MMP-2 or MMP-9, their inhibitors TIMP-1 and TIMP-2, or fibronectin in either nondiabetic or diabetic HREC cultures. These results support the notion that modulation of MMP function by extracellular matrix components occurs in response to glucose and may be relevant to the development of diabetic retinopathy.


Growth Hormone & Igf Research | 1998

Insulin-like growth factor: Receptor and binding proteins in human retinal endothelial cell cultures of diabetic and non-diabetic origin

Polyxenie E. Spoerri; Ea Ellis; Roy W. Tarnuzzer; Maria B. Grant

Human retinal endothelial cell (HREC) cultures of diabetic and non-diabetic origin were examined for the production of insulin-like growth factor I (IGF-I), IGF-I receptor and IGF-binding proteins (IGFBPs) using colloidal gold quantitative immunocytochemistry and quantitative reverse transcriptase-polymerase chain reaction (QRT-PCR). The levels of immunoreactivity for IGF-I receptor and for four IGFBPs (IGFBP-1, -2, -3 and -5) were significantly increased in diabetic HREC cultures. Moreover, diabetic HREC cultures showed significantly less immunoreactivity for IGF-I and for IGFBP-4 as compared to non-diabetic HREC cultures. Message levels for IGF-I decreased two-fold in diabetic HREC and correlated with protein levels. Message levels for IGFBP-1, -2 and -5 increased 1.5-, 1.7- and 1.6-fold, respectively, in diabetic HREC and correlated with protein levels. However, the protein levels for IGF-I receptor and IGFBP-3 and -4 did not correlate with mRNA levels. There were no differences in mRNA levels for IGF-I receptor and IGFBP-3 and -4 between diabetic and non-diabetic HREC cultures, suggesting a post-transcriptional regulation of IGF-I receptor and the two IGFBPs. The net effect, however, supports enhanced IGF-I action in HREC cultures of diabetic origin which is an important cellular event in diabetic retinopathy.


Circulation Research | 2003

Reduction in Preretinal Neovascularization by Ribozymes That Cleave the A2B Adenosine Receptor mRNA

Aqeela Afzal; Lynn C. Shaw; Sergio Caballero; Polyxenie E. Spoerri; Alfred S. Lewin; D. Zeng; Luiz Belardinelli; Maria B. Grant

Abstract— Adenosine modulates a variety of cellular functions by interacting with specific cell surface G protein–coupled receptors (A1, A2A, A2B, and A3) and is a potential mediator of angiogenesis through the A2B receptor. The lack of a potent, selective A2B receptor inhibitor has hampered its characterization. Our goal was to design a hammerhead ribozyme that would specifically cleave the A2B receptor mRNA and examine its effect on retinal angiogenesis. Ribozymes specific for the mouse and human A2B receptor mRNAs were designed and cloned in expression plasmids. Human embryonic kidney (HEK) 293 cells were transfected with these plasmids and A2B receptor mRNA levels were determined by quantitative real-time RT-PCR. Human retinal endothelial cells (HRECs) were also transfected and cell migration was examined. The effects of these ribozymes on the levels of preretinal neovascularization were determined using a neonatal mouse model of oxygen-induced retinopathy (OIR). We produced a ribozyme with a Vmax of 515±125 pmol/min and a Kcat of 36.1±8.3 min−1 (P ≤1×10−5). Transfection of HEK293 cells with the plasmid expressing the ribozyme reduced A2B receptor mRNA levels by 45±4.8% (P =5.1×10−5). Transfection of HRECs reduced NECA-stimulated migration of cells by 47.3±1.2% (P =7×10−4). Intraocular injection of the constructs into the mouse model reduced preretinal neovascularization by 53.5±8.2% (P =4.5×10−5). Our results suggest that the A2B receptor ribozyme will provide a tool for the selective inhibition of this receptor and provide further support for the role of A2B receptor in retinal angiogenesis.


Regulatory Peptides | 1999

Expression of IGF-1, IGF-1 receptor and TGF-β following balloon angioplasty in atherosclerotic and normal rabbit iliac arteries: An immunocytochemical study

Maria B. Grant; Thomas J. Wargovich; David M Bush; Denifield Player; Sergio Caballero; Foegh Ml; Polyxenie E. Spoerri

Growth factors have been implicated in the pathogenesis of restenosis (myointimal hyperplasia after coronary interventions). In this study, we examined the expression of insulin-like growth factor-I (IGF-1), IGF-1 receptor, and transforming growth factor-beta (TGF-beta) in atherosclerotic and normal rabbit iliac arteries following overstretch balloon angioplasty of the iliac arteries to create a vascular lesion. Animals were sacrificed at 0, 3, 7, 15 and 42 days post angioplasty. The iliac arteries were processed for immunocytochemical localization of IGF-1, IGF-1 receptor and TGF-beta using colloidal gold and the data were quantitatively analyzed. IGF-1, IGF-1 receptor and TGF-beta immunoreactivity were all significantly increased in atherosclerotic arteries compared to control at all of the time points examined. Following balloon angioplasty, the levels of IGF-1 and IGF-1 receptor increased significantly in both control and even further in hypercholesterolemic vessels. In control vessels, the IGF-1 levels returned to preintervention levels, while in atherosclerotic vessels, the levels of IGF-1 and IGF-1 receptor remained elevated. In addition, TGF-beta levels in control vessels showed an initial rise in the first week following injury but then returned to baseline levels. In contrast, atherosclerotic vessels demonstrated a sustained expression of TGF-beta. Thus, IGF-1 and TGF-beta expression is different in normal vs. atherosclerotic vessels following vascular injury. The intensity of expression of IGF-1 and its receptor, which is not reduced at 42 days compared to 15 days following injury, support a role for IGF-1 in smooth muscle cell proliferation and migration. The sustained increase in TGF-beta could facilitate extracellular matrix (ECM) accumulation. Local vascular therapy that is directed towards modulating the effects of IGF-1 and TGF-beta could reduce restenosis.


Gene Therapy | 2006

Proliferating endothelial cell-specific expression of IGF-I receptor ribozyme inhibits retinal neovascularization

Lynn C. Shaw; Hao Pan; Aqeela Afzal; Sergio Li Calzi; Polyxenie E. Spoerri; Sean M. Sullivan; Maria B. Grant

Insulin-like growth factor-I (IGF-I) and its receptor (IGF-IR) are essential for normal ocular development and are expressed in numerous ocular cell types including lens epithelial cells, retinal pigment epithelial cells, Müller cells and endothelial cells. Endothelial cell proliferation is a common feature of proliferative retinopathies and involves abnormal growth of blood vessels within and on the surface of the retina. In an effort to inhibit the formation of these aberrant blood vessels, we cloned an IGF-IR ribozyme into an expression vector that limits expression of the ribozyme to proliferating endothelial cells. An endothelin enhancer and Cdc6 promoter chimera drives expression of the IGF-IR ribozyme. This promoter limited retinal expression of the reporter gene to proliferating endothelial cells in two mouse models of proliferative retinopathy. In addition, expression of the IGF-IR ribozyme by this promoter inhibited aberrant retinal angiogenesis in both models while preserving normal vessels. These results demonstrate the feasibility of IGF-IR ribozyme expression in a selective manner for safer treatment of abnormal angiogenesis associated with retinopathy.


Developmental Brain Research | 1997

Endothelial cell conditioned media mediated regulation of glutamine synthetase activity in glial cells

Polyxenie E. Spoerri; Maria Grant; Julissa Gomez; Antonia Vernadakis

The responsiveness of late passage C-6 glial cells to human retinal endothelial cell-conditioned medium (HREC-CM) was examined using glutamine synthetase (GS) activity as test parameter. Treatment with 50% or 100% HREC-CM for 4-5 days slightly affected the morphology but significantly increased GS activity. Increased glial GS activity induced by vascular endothelial cells is of relevance in preventing extracellular glutamate toxicity and regulating the brain/retinal blood barrier.

Collaboration


Dive into the Polyxenie E. Spoerri's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Hao Pan

University of Florida

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Ea Ellis

University of Florida

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge