Pooja Saxena
John Innes Centre
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Pooja Saxena.
Biomacromolecules | 2012
Amy M. Wen; Sourabh Shukla; Pooja Saxena; Alaa A. A. Aljabali; Ibrahim Yildiz; Sourav Dey; Joshua E. Mealy; Alice C. Yang; David J. Evans; George P. Lomonossoff; Nicole F. Steinmetz
The development of multifunctional nanoparticles for medical applications is of growing technological interest. A single formulation containing imaging and/or drug moieties that is also capable of preferential uptake in specific cells would greatly enhance diagnostics and treatments. There is growing interest in plant-derived viral nanoparticles (VNPs) and establishing new platform technologies based on these nanoparticles inspired by nature. Cowpea mosaic virus (CPMV) serves as the standard model for VNPs. Although exterior surface modification is well-known and has been comprehensively studied, little is known of interior modification. Additional functionality conferred by the capability for interior engineering would be of great benefit toward the ultimate goal of targeted drug delivery. Here, we examined the capacity of empty CPMV (eCPMV) particles devoid of RNA to encapsulate a wide variety of molecules. We systematically investigated the conjugation of fluorophores, biotin affinity tags, large molecular weight polymers such as poly(ethylene glycol) (PEG), and various peptides through targeting reactive cysteines displayed selectively on the interior surface. Several methods are described that mutually confirm specific functionalization of the interior. Finally, CPMV and eCPMV were labeled with near-infrared fluorophores and studied side-by-side in vitro and in vivo. Passive tumor targeting via the enhanced permeability and retention effect and optical imaging were confirmed using a preclinical mouse model of colon cancer. The results of our studies lay the foundation for the development of the eCPMV platform in a range of biomedical applications.
Human Vaccines | 2011
Nicholas P. Montague; Eva C. Thuenemann; Pooja Saxena; Keith Saunders; Paolo Lenzi; George P. Lomonossoff
Particles of cowpea mosaic virus (CPMV) have enjoyed considerable success as a means of presenting peptides for vaccine purposes. However, the existing technology has limitations in regard to the size and nature of the peptides which can be presented and has problems regarding bio-containment. Recent developments suggest ways by which these problems can be overcome, increasing the range of potential applications of CPMV-based particle technology.
Nature Communications | 2015
Emma L. Hesketh; Yulia Meshcheriakova; Kyle C. Dent; Pooja Saxena; Rebecca F. Thompson; Joseph J.B. Cockburn; George P. Lomonossoff; Neil A. Ranson
Cowpea mosaic virus is a plant-infecting member of the Picornavirales and is of major interest in the development of biotechnology applications. Despite the availability of >100 crystal structures of Picornavirales capsids, relatively little is known about the mechanisms of capsid assembly and genome encapsidation. Here we have determined cryo-electron microscopy reconstructions for the wild-type virus and an empty virus-like particle, to 3.4 Å and 3.0 Å resolution, respectively, and built de novo atomic models of their capsids. These new structures reveal the C-terminal region of the small coat protein subunit, which is essential for virus assembly and which was missing from previously determined crystal structures, as well as residues that bind to the viral genome. These observations allow us to develop a new model for genome encapsidation and capsid assembly.
Methods in Enzymology | 2012
Frank Sainsbury; Pooja Saxena; Katrin Geisler; Anne Osbourn; George P. Lomonossoff
A series of vectors (the pEAQ series) based on cowpea mosaic virus has been developed which allows the rapid transient expression of high levels of foreign protein in plants without the need for viral replication. The plasmids are small binary vectors, which are introduced into plant leaves by agroinfiltration. They are modular in design and allow the insertion of multiple coding sequences on the same segment of T-DNA. These properties make the pEAQ vectors particularly suitable for use in situations, such as the investigation and manipulation of metabolic pathways, where the coexpression of multiple proteins within a cell is required.
Methods of Molecular Biology | 2014
Frank Sainsbury; Pooja Saxena; Alaa A. A. Aljabali; Keith Saunders; David J. Evans; George P. Lomonossoff
The development of methods for the production of empty Cowpea mosaic virus (CPMV) virus-like particles (VLPs) that are devoid of RNA, eVLPs, has renewed promise in CPMV capsid technologies. The recombinant nature of CPMV eVLP production means that the extent and variety of genetic modifications that may be incorporated into the particles is theoretically much greater than those that can be made to infectious CPMV virions due to restrictions on viral propagation of the latter. Free of the infectious agent, the genomic RNA, these particles are now finding potential uses in vaccine development, in vivo imaging, drug delivery, and other nanotechnology applications that make use of internal loading of the empty particles. Here we describe methods for the genetic modification and production of CPMV eVLPs and describe techniques useful for their characterization.
Plant Biotechnology Journal | 2014
Yulia Meshcheriakova; Pooja Saxena; George P. Lomonossoff
A transient expression system based on a deleted version of Cowpea mosaic virus (CPMV) RNA-2, termed CPMV-HT, in which the sequence to be expressed is positioned between a modified 5′ UTR and the 3′ UTR has been successfully used for the plant-based expression of a wide range of proteins, including heteromultimeric complexes. While previous work has demonstrated that alterations to the sequence of the 5′ UTR can dramatically influence expression levels, the role of the 3′ UTR in enhancing expression has not been determined. In this work, we have examined the effect of different mutations in the 3′UTR of CPMV RNA-2 on expression levels using the reporter protein GFP encoded by the expression vector, pEAQexpress-HT-GFP. The results showed that the presence of a 3′ UTR in the CPMV-HT system is important for achieving maximal expression levels. Removal of the entire 3′ UTR reduced expression to approximately 30% of that obtained in its presence. It was found that the Y-shaped secondary structure formed by nucleotides 125–165 of the 3′ UTR plays a key role in its function; mutations that disrupt this Y-shaped structure have an effect equivalent to the deletion of the entire 3′ UTR. Our results suggest that the Y-shaped secondary structure acts by enhancing mRNA accumulation rather than by having a direct effect on RNA translation. The work described in this paper shows that the 5′ and 3′ UTRs in CPMV-HT act orthogonally and that mutations introduced into them allow fine modulation of protein expression levels.
ACS Applied Materials & Interfaces | 2014
Miriam Jaafar; Alaa A. A. Aljabali; Isadora Berlanga; Rubén Mas-Ballesté; Pooja Saxena; Susan Warren; George P. Lomonossoff; David J. Evans; P. J. de Pablo
Magnetic nanoparticles have multiple applications in materials science. In particular, virus capsids have been suggested as promising templates for building up nanometric-sized magnetic clusters by taking advantage of their inner cavity as a nanoreactor. In this study we investigate the magnetization of individual cobalt-filled cowpea mosaic virus empty virus-like particles using atomic force microscopy. We also combine the analysis of the effects of dehydration on the structure of virus particles with a comparison of their magnetic signal to that provided by commercially available magnetic nanoparticles of similar size. These two approaches allow the evaluation of the structure of the metallic cluster grown inside the virus capsid. We conclude that, rather than forming solid clusters, cobalt inside viruses forms a discontinuous structure that does not completely fill the virus cavity and reaches about 10% of its volume.
Annual Review of Phytopathology | 2014
Pooja Saxena; George P. Lomonossoff
Replication, the process by which the genetic material of a virus is copied to generate multiple progeny genomes, is the central part of the virus infection cycle. For an infection to be productive, it is essential that this process is coordinated with other aspects of the cycle, such as translation of the viral genome, encapsidation, and movement of the genome between cells. In the case of positive-strand RNA viruses, this represents a particular challenge, as the infecting genome must not only be replicated but also serve as an mRNA for the production of the replication-associated proteins. In recent years, it has become apparent that in positive-strand RNA plant viruses all the aspects of the infection cycle are intertwined. This article reviews the current state of knowledge regarding replication-associated events in such viruses.
Plant Biotechnology Journal | 2011
Pooja Saxena; Yi-Cheng Hsieh; Veria Y. Alvarado; Frank Sainsbury; Keith Saunders; George P. Lomonossoff; Herman B. Scholthof
Structure | 2016
Nhung T. Huynh; Emma L. Hesketh; Pooja Saxena; Yulia Meshcheriakova; You-Chan Ku; Linh Hoang; John E. Johnson; Neil A. Ranson; George P. Lomonossoff; Vijay S. Reddy