Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Poonam Kanwar is active.

Publication


Featured researches published by Poonam Kanwar.


PLOS ONE | 2012

Rice phospholipase A superfamily: organization, phylogenetic and expression analysis during abiotic stresses and development.

Amarjeet Singh; Vinay Baranwal; Alka Shankar; Poonam Kanwar; Rajeev Ranjan; Sandeep Kumar Yadav; Amita Pandey; Sanjay Kapoor; Girdhar K. Pandey

Background Phospholipase A (PLA) is an important group of enzymes responsible for phospholipid hydrolysis in lipid signaling. PLAs have been implicated in abiotic stress signaling and developmental events in various plants species. Genome-wide analysis of PLA superfamily has been carried out in dicot plant Arabidopsis. A comprehensive genome-wide analysis of PLAs has not been presented yet in crop plant rice. Methodology/Principal Findings A comprehensive bioinformatics analysis identified a total of 31 PLA encoding genes in the rice genome, which are divided into three classes; phospholipase A1 (PLA1), patatin like phospholipases (pPLA) and low molecular weight secretory phospholipase A2 (sPLA2) based on their sequences and phylogeny. A subset of 10 rice PLAs exhibited chromosomal duplication, emphasizing the role of duplication in the expansion of this gene family in rice. Microarray expression profiling revealed a number of PLA members expressing differentially and significantly under abiotic stresses and reproductive development. Comparative expression analysis with Arabidopsis PLAs revealed a high degree of functional conservation between the orthologs in two plant species, which also indicated the vital role of PLAs in stress signaling and plant development across different plant species. Moreover, sub-cellular localization of a few candidates suggests their differential localization and functional role in the lipid signaling. Conclusion/Significance The comprehensive analysis and expression profiling would provide a critical platform for the functional characterization of the candidate PLA genes in crop plants.


Cell Calcium | 2014

Comprehensive structural, interaction and expression analysis of CBL and CIPK complement during abiotic stresses and development in rice.

Poonam Kanwar; Sibaji K. Sanyal; Indu Tokas; Akhilesh K. Yadav; Amita Pandey; Sanjay Kapoor; Girdhar K. Pandey

Calcium ion is involved in diverse physiological and developmental pathways. One of the important roles of calcium is a signaling messenger, which regulates signal transduction in plants. CBL (calcineurin B-like protein) is one of the calcium sensors that specifically interact with a family of serine-threonine protein kinases designated as CBL-interacting protein kinases (CIPKs). The coordination of these two gene families defines complexity of the signaling networks in several stimulus-response-coupling during various environmental stresses. In Arabidopsis, both of these gene families have been extensively studied. To understand in-depth mechanistic interplay of CBL-CIPK mediated signaling pathways, expression analysis of entire set of CBL and CIPK genes in rice genome under three abiotic stresses (salt, cold and drought) and different developmental stages (3-vegetative stages and 11-reproductive stages) were done using microarray expression data. Interestingly, expression analysis showed that rice CBLs and CIPKs are not only involved in the abiotic stress but their significant role is also speculated in the developmental processes. Chromosomal localization of rice CBL and CIPK genes reveals that only OsCBL7 and OsCBL8 shows tandem duplication among CBLs whereas CIPKs were evolved by many tandem as well as segmental duplications. Duplicated OsCIPK genes showed variable expression pattern indicating the role of gene duplication in the extension and functional diversification of CIPK gene family in rice. Arabidopsis SOS3/CBL4 related genes in rice (OsCBL4, OsCBL5, OsCBL7 and OsCBL8) were employed for interaction studies with rice and Arabidopsis CIPKs. OsCBLs and OsCIPKs are not only found structurally similar but likely to be functionally equivalent to Arabidopsis CBLs and CIPKs genes since SOS3/CBL4 related OsCBLs interact with more or less similarly to rice and Arabidopsis CIPKs and exhibited an interaction pattern comparable with Arabidopsis SOS3/CBL4.


Plant Physiology | 2015

Calcineurin B-Like Protein-Interacting Protein Kinase CIPK21 Regulates Osmotic and Salt Stress Responses in Arabidopsis

Girdhar K. Pandey; Poonam Kanwar; Amarjeet Singh; Leonie Steinhorst; Amita Pandey; Akhilesh K. Yadav; Indu Tokas; Sibaji K. Sanyal; Beom-Gi Kim; Sung Chul Lee; Yong-Hwa Cheong; Joerg Kudla; Sheng Luan

A cytoplamic calcineurin-like-dependent protein kinase affects salt and osmotic stress responses by preferentially localizing to the vacuolar membrane under stress. The role of calcium-mediated signaling has been extensively studied in plant responses to abiotic stress signals. Calcineurin B-like proteins (CBLs) and CBL-interacting protein kinases (CIPKs) constitute a complex signaling network acting in diverse plant stress responses. Osmotic stress imposed by soil salinity and drought is a major abiotic stress that impedes plant growth and development and involves calcium-signaling processes. In this study, we report the functional analysis of CIPK21, an Arabidopsis (Arabidopsis thaliana) CBL-interacting protein kinase, ubiquitously expressed in plant tissues and up-regulated under multiple abiotic stress conditions. The growth of a loss-of-function mutant of CIPK21, cipk21, was hypersensitive to high salt and osmotic stress conditions. The calcium sensors CBL2 and CBL3 were found to physically interact with CIPK21 and target this kinase to the tonoplast. Moreover, preferential localization of CIPK21 to the tonoplast was detected under salt stress condition when coexpressed with CBL2 or CBL3. These findings suggest that CIPK21 mediates responses to salt stress condition in Arabidopsis, at least in part, by regulating ion and water homeostasis across the vacuolar membranes.


PLOS ONE | 2013

Comprehensive Genomic Analysis and Expression Profiling of Phospholipase C Gene Family during Abiotic Stresses and Development in Rice

Amarjeet Singh; Poonam Kanwar; Amita Pandey; Akhilesh K. Tyagi; Sudhir K. Sopory; Sanjay Kapoor; Girdhar K. Pandey

Background Phospholipase C (PLC) is one of the major lipid hydrolysing enzymes, implicated in lipid mediated signaling. PLCs have been found to play a significant role in abiotic stress triggered signaling and developmental processes in various plant species. Genome wide identification and expression analysis have been carried out for this gene family in Arabidopsis, yet not much has been accomplished in crop plant rice. Methodology/Principal Findings An exhaustive in-silico exploration of rice genome using various online databases and tools resulted in the identification of nine PLC encoding genes. Based on sequence, motif and phylogenetic analysis rice PLC gene family could be divided into phosphatidylinositol-specific PLCs (PI-PLCs) and phosphatidylcholine- PLCs (PC-PLC or NPC) classes with four and five members, respectively. A comparative analysis revealed that PLCs are conserved in Arabidopsis (dicots) and rice (monocot) at gene structure and protein level but they might have evolved through a separate evolutionary path. Transcript profiling using gene chip microarray and quantitative RT-PCR showed that most of the PLC members expressed significantly and differentially under abiotic stresses (salt, cold and drought) and during various developmental stages with condition/stage specific and overlapping expression. This finding suggested an important role of different rice PLC members in abiotic stress triggered signaling and plant development, which was also supported by the presence of relevant cis-regulatory elements in their promoters. Sub-cellular localization of few selected PLC members in Nicotiana benthamiana and onion epidermal cells has provided a clue about their site of action and functional behaviour. Conclusion/Significance The genome wide identification, structural and expression analysis and knowledge of sub-cellular localization of PLC gene family envisage the functional characterization of these genes in crop plants in near future.


PLOS ONE | 2013

Gene expression analysis of rice seedling under potassium deprivation reveals major changes in metabolism and signaling components.

Alka Shankar; Amarjeet Singh; Poonam Kanwar; Ashish Kumar Srivastava; Amita Pandey; Penna Suprasanna; Sanjay Kapoor; Girdhar K. Pandey

Plant nutrition is one of the important areas for improving the yield and quality in crops as well as non-crop plants. Potassium is an essential plant nutrient and is required in abundance for their proper growth and development. Potassium deficiency directly affects the plant growth and hence crop yield and production. Recently, potassium-dependent transcriptomic analysis has been performed in the model plant Arabidopsis, however in cereals and crop plants; such a transcriptome analysis has not been undertaken till date. In rice, the molecular mechanism for the regulation of potassium starvation responses has not been investigated in detail. Here, we present a combined physiological and whole genome transcriptomic study of rice seedlings exposed to a brief period of potassium deficiency then replenished with potassium. Our results reveal that the expressions of a diverse set of genes annotated with many distinct functions were altered under potassium deprivation. Our findings highlight altered expression patterns of potassium-responsive genes majorly involved in metabolic processes, stress responses, signaling pathways, transcriptional regulation, and transport of multiple molecules including K+. Interestingly, several genes responsive to low-potassium conditions show a reversal in expression upon resupply of potassium. The results of this study indicate that potassium deprivation leads to activation of multiple genes and gene networks, which may be acting in concert to sense the external potassium and mediate uptake, distribution and ultimately adaptation to low potassium conditions. The interplay of both upregulated and downregulated genes globally in response to potassium deprivation determines how plants cope with the stress of nutrient deficiency at different physiological as well as developmental stages of plants.


FEBS Journal | 2014

Genome‐wide expressional and functional analysis of calcium transport elements during abiotic stress and development in rice

Amarjeet Singh; Poonam Kanwar; Akhilesh K. Yadav; Manali Mishra; Saroj K. Jha; Vinay Baranwal; Amita Pandey; Sanjay Kapoor; Akhilesh K. Tyagi; Girdhar K. Pandey

Ca2+ homeostasis is required to maintain a delicate balance of cytosolic Ca2+ during normal and adverse growth conditions. Various Ca2+ transporters actively participate to maintain this delicate balance especially during abiotic stresses and developmental events in plants. In this study, we present a genome‐wide account, detailing expression profiles, subcellular localization and functional analysis of rice Ca2+ transport elements. Exhaustive in silico data mining and analysis resulted in the identification of 81 Ca2+ transport element genes, which belong to various groups such as Ca2+‐ATPases (pumps), exchangers, channels, glutamate receptor homologs and annexins. Phylogenetic analysis revealed that different Ca2+ transporters are evolutionarily conserved across different plant species. Comprehensive expression analysis by gene chip microarray and quantitative RT‐PCR revealed that a substantial proportion of Ca2+ transporter genes were expressed differentially under abiotic stresses (salt, cold and drought) and reproductive developmental stages (panicle and seed) in rice. These findings suggest a possible role of rice Ca2+ transporters in abiotic stress and development triggered signaling pathways. Subcellular localization of Ca2+ transporters from different groups in Nicotiana benthamiana revealed their variable localization to different compartments, which could be their possible sites of action. Complementation of Ca2+ transport activity of K616 yeast mutant by Ca2+‐ATPase OsACA7 and involvement in salt tolerance verified its functional behavior. This study will encourage detailed characterization of potential candidate Ca2+ transporters for their functional role in planta.


Omics A Journal of Integrative Biology | 2013

Plant Omics: Genome-Wide Analysis of ABA Repressor1 (ABR1) Related Genes in Rice During Abiotic Stress and Development

Manali Mishra; Poonam Kanwar; Amarjeet Singh; Amita Pandey; Sanjay Kapoor; Girdhar K. Pandey

Rice is one of the worlds most important food crops. Approximately 50% of rice production is affected by drought, an abiotic stress greatly impacting crop quality and yield. Agrigenomics research now offers the promise of understanding the drought stress impacts at a systems level. ABA repressor 1 (ABR1) is a member of the ethylene-responsive element-binding factor (ERF/AP2) superfamily of ERF transcription factors. We report here a global expression analysis of the rice ABR1-related genes where we identified the expression pattern of each Oryza sativa ERF (OsERF) during various developmental stages and abiotic stress treatments. The group X OsERFs, closely related genes orthologous to ABR1, exhibited significant differential expression profiles during certain stages of development and in response to abiotic stresses. We selected a subset of these genes and validated their observed expression profiles in response to abiotic stresses using quantitative RT-PCR. Moreover, we discovered that pairs of recently duplicated group X OsERFs display highly distinct expression profiles from one another. We determined the subcellular localization of two group X OsERF genes and observed localization to the nucleolus. To the best of our knowledge, this is the first report of localization of rice ERF protein to the nucleolus. This study also points out an overlap of expression under abiotic stress and reproductive developmental stages, indicating cross talk among different signaling pathways. This genome-wide expression analysis of rice ABR1 homologs paves the way for future functional analyses, with the goal to develop strategies to improve rice abiotic stress tolerance.


Scientific Reports | 2015

A rice tonoplastic calcium exchanger, OsCCX2 mediates Ca2+/cation transport in yeast.

Akhilesh K. Yadav; Alka Shankar; Saroj K. Jha; Poonam Kanwar; Amita Pandey; Girdhar K. Pandey

In plant cell, cations gradient in cellular compartments is maintained by synergistic action of various exchangers, pumps and channels. The Arabidopsis exchanger family members (AtCCX3 and AtCCX5) were previously studied and belong to CaCA (calcium cation exchangers) superfamily while none of the rice CCXs has been functionally characterized for their cation transport activities till date. Rice genome encode four CCXs and only OsCCX2 transcript showed differential expression under abiotic stresses and Ca2+ starvation conditions. The OsCCX2 localized to tonoplast and suppresses the Ca2+ sensitivity of K667 (low affinity Ca2+ uptake deficient) yeast mutant under excess CaCl2 conditions. In contrast to AtCCXs, OsCCX2 expressing K667 yeast cells show tolerance towards excess Na+, Li+, Fe2+, Zn2+ and Co2+ and suggest its ability to transport both mono as well as divalent cations in yeast. Additionally, in contrast to previously characterized AtCCXs, OsCCX2 is unable to complement yeast trk1trk2 double mutant suggesting inability to transport K+ in yeast system. These finding suggest that OsCCX2 having distinct metal transport properties than previously characterized plant CCXs. OsCCX2 can be used as potential candidate for enhancing the abiotic stress tolerance in plants as well as for phytoremediation of heavy metal polluted soil.


Scientific Reports | 2017

Alterations in rice chloroplast integrity, photosynthesis and metabolome associated with pathogenesis of Rhizoctonia solani

Srayan Ghosh; Poonam Kanwar; Gopaljee Jha

Sheath blight disease is caused by a necrotrophic fungal pathogen Rhizoctonia solani and it continues to be a challenge for sustainable rice cultivation. In this study, we adopted a multi-pronged approach to understand the intricacies of rice undergoing susceptible interactions with R. solani. Extensive anatomical alteration, chloroplast localized ROS, deformed chloroplast ultrastructure along with decreased photosynthetic efficiency were observed in infected tissue. GC-MS based metabolite profiling revealed accumulation of glycolysis and TCA cycle intermediates, suggesting enhanced respiration. Several aromatic and aliphatic amino acids along with phenylpropanoid intermediates were also accumulated, suggesting induction of secondary metabolism during pathogenesis. Furthermore, alterations in carbon metabolism along with perturbation of hormonal signalling were highlighted in this study. The gene expression analysis including RNAseq profiling reinforced observed metabolic alterations in the infected tissues. In conclusion, the present study unravels key events associated during susceptible rice-R. solani interactions and identifies metabolites and transcripts that are accumulated in infected tissues.


Plant Science | 2017

Arabidopsis CBL interacting protein kinase 3 interacts with ABR1, an APETALA2 domain transcription factor, to regulate ABA responses

Sibaji K. Sanyal; Poonam Kanwar; Akhilesh K. Yadav; Cheshta Sharma; A. Kumar; Girdhar K. Pandey

Calcium (Ca2+) plays a vital role as a second messenger in several signaling pathways in plants. The calcineurin B-like proteins (CBLs) represent a family of plant calcium-binding proteins that function in propagating Ca2+ signals by interacting with CBL interacting protein kinases (CIPKs). Phosphorylation of CBL by CIPK is essential for the module to display full activity towards its target protein. Previous genetic analysis showed that the function of CBL9-CIPK3 module was implicated in negatively regulating seed germination and early development. In the present study, we have biochemically investigated the interaction of CBL9-CIPK3 module and our findings show that CBL9 is phosphorylated by CIPK3. Moreover, Abscisic acid repressor 1 (ABR1) is identified as the downstream target of CIPK3 and CIPK3-ABR1 function to regulate ABA responses during seed germination. Our study also indicates that the role of ABR1 is not limited to seed germination but it also regulates the ABA dependent processes in the adult stage of plant development. Combining our results, we conclude that the CBL9-CIPK3-ABR1 pathway functions to regulate seed germination and ABA dependent physiological processes in Arabidopsis.

Collaboration


Dive into the Poonam Kanwar's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Gopaljee Jha

Council of Scientific and Industrial Research

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge