Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Poramate Manoonpong is active.

Publication


Featured researches published by Poramate Manoonpong.


PLOS Computational Biology | 2007

Adaptive, fast walking in a biped robot under neuronal control and learning

Poramate Manoonpong; Tao Geng; Tomas Kulvicius; Bernd Porr; Florentin Wörgötter

Human walking is a dynamic, partly self-stabilizing process relying on the interaction of the biomechanical design with its neuronal control. The coordination of this process is a very difficult problem, and it has been suggested that it involves a hierarchy of levels, where the lower ones, e.g., interactions between muscles and the spinal cord, are largely autonomous, and where higher level control (e.g., cortical) arises only pointwise, as needed. This requires an architecture of several nested, sensori–motor loops where the walking process provides feedback signals to the walkers sensory systems, which can be used to coordinate its movements. To complicate the situation, at a maximal walking speed of more than four leg-lengths per second, the cycle period available to coordinate all these loops is rather short. In this study we present a planar biped robot, which uses the design principle of nested loops to combine the self-stabilizing properties of its biomechanical design with several levels of neuronal control. Specifically, we show how to adapt control by including online learning mechanisms based on simulated synaptic plasticity. This robot can walk with a high speed (>3.0 leg length/s), self-adapting to minor disturbances, and reacting in a robust way to abruptly induced gait changes. At the same time, it can learn walking on different terrains, requiring only few learning experiences. This study shows that the tight coupling of physical with neuronal control, guided by sensory feedback from the walking pattern itself, combined with synaptic learning may be a way forward to better understand and solve coordination problems in other complex motor tasks.


Frontiers in Neural Circuits | 2013

Neural control and adaptive neural forward models for insect-like, energy-efficient, and adaptable locomotion of walking machines

Poramate Manoonpong; Ulrich Parlitz; Florentin Wörgötter

Living creatures, like walking animals, have found fascinating solutions for the problem of locomotion control. Their movements show the impression of elegance including versatile, energy-efficient, and adaptable locomotion. During the last few decades, roboticists have tried to imitate such natural properties with artificial legged locomotion systems by using different approaches including machine learning algorithms, classical engineering control techniques, and biologically-inspired control mechanisms. However, their levels of performance are still far from the natural ones. By contrast, animal locomotion mechanisms seem to largely depend not only on central mechanisms (central pattern generators, CPGs) and sensory feedback (afferent-based control) but also on internal forward models (efference copies). They are used to a different degree in different animals. Generally, CPGs organize basic rhythmic motions which are shaped by sensory feedback while internal models are used for sensory prediction and state estimations. According to this concept, we present here adaptive neural locomotion control consisting of a CPG mechanism with neuromodulation and local leg control mechanisms based on sensory feedback and adaptive neural forward models with efference copies. This neural closed-loop controller enables a walking machine to perform a multitude of different walking patterns including insect-like leg movements and gaits as well as energy-efficient locomotion. In addition, the forward models allow the machine to autonomously adapt its locomotion to deal with a change of terrain, losing of ground contact during stance phase, stepping on or hitting an obstacle during swing phase, leg damage, and even to promote cockroach-like climbing behavior. Thus, the results presented here show that the employed embodied neural closed-loop system can be a powerful way for developing robust and adaptable machines.


Robotics and Autonomous Systems | 2008

Sensor-driven neural control for omnidirectional locomotion and versatile reactive behaviors of walking machines

Poramate Manoonpong; Frank Pasemann; Florentin Wörgötter

This article describes modular neural control structures for different walking machines utilizing discrete-time neurodynamics. A simple neural oscillator network serves as a central pattern generator producing the basic rhythmic leg movements. Other modules, like the velocity regulating and the phase switching networks, enable the machines to perform omnidirectional walking as well as reactive behaviors, like obstacle avoidance and different types of tropisms. These behaviors are generated in a sensori-motor loop with respect to appropriate sensor inputs, to which a neural preprocessing is applied. The neuromodules presented are small so that their structure-function relationship can be analysed. The complete controller is general in the sense that it can be easily adapted to different types of even-legged walking machines without changing its internal structure and parameters.


Evolving Systems | 2013

Information Dynamics based Self-Adaptive Reservoir for Delay Temporal Memory Tasks

Sakyasingha Dasgupta; Florentin Wörgötter; Poramate Manoonpong

Recurrent neural networks of the reservoir computing (RC) type have been found useful in various time-series processing tasks with inherent non-linearity and requirements of variable temporal memory. Specifically for delayed response tasks involving the transient memorization of information (temporal memory), self-adaptation in RC is crucial for generalization to varying delays. In this work using information theory, we combine a generalized intrinsic plasticity rule with a local information dynamics based schema of reservoir neuron leak adaptation. This allows the RC network to be optimized in a self-adaptive manner with minimal parameter tuning. Local active information storage, measured as the degree of influence of previous activity on the next time step activity of a neuron, is used to modify its leak-rate. This results in RC network with non-uniform leak rate which depends on the time scales of the incoming input. Intrinsic plasticity (IP) is aimed at maximizing the mutual information between each neuron’s input and output while maintaining a mean level of activity (homeostasis). Experimental results on two standard benchmark tasks confirm the extended performance of this system as compared to the static RC (fixed leak and no IP) and RC with only IP. In addition, using both a simulated wheeled robot and a more complex physical hexapod robot, we demonstrate the ability of the system to achieve long temporal memory for solving a basic T-shaped maze navigation task with varying delay time scale.


The International Journal of Robotics Research | 2007

Modular Reactive Neurocontrol for Biologically Inspired Walking Machines

Poramate Manoonpong; Frank Pasemann; Hubert Roth

A neurocontroller is described which generates the basic locomotion and controls the sensor-driven behavior of a four-legged and a six-legged walking machine. The controller utilizes discrete-time neurodynamics, and is of modular structure. One module is for processing sensor signals, one is a neural oscillator network serving as a central pattern generator, and the third one is a so-called velocity regulating network. These modules are small and their structures and their functionalities are analyzable. In combination, they enable the machines to autonomously explore an unknown environment, to avoid obstacles, and to escape from corners or deadlock situations. The neurocontroller was developed and tested first using a physical simulation environment, and then it was successfully transferred to the physical walking machines. Locomotion is based on a gait where the diagonal legs are paired and move together, e.g. trot gait for the four-legged walking machine and tripod gait for the six-legged walking machine. The controller developed is universal in the sense that it can easily be adapted to different types of even-legged walking machines without changing the internal structure and its parameters.


international conference on advanced intelligent mechatronics | 2013

Visual terrain classification for selecting energy efficient gaits of a hexapod robot

Steffen Zenker; Eren Erdal Aksoy; Dennis Goldschmidt; Florentin Wörgötter; Poramate Manoonpong

Legged robots need to be able to classify and recognize different terrains to adapt their gait accordingly. Recent works in terrain classification use different types of sensors (like stereovision, 3D laser range, and tactile sensors) and their combination. However, such sensor systems require more computing power, produce extra load to legged robots, and/or might be difficult to install on a small size legged robot. In this work, we present an online terrain classification system. It uses only a monocular camera with a feature-based terrain classification algorithm which is robust to changes in illumination and view points. For this algorithm, we extract local features of terrains using either Scale Invariant Feature Transform (SIFT) or Speed Up Robust Feature (SURF). We encode the features using the Bag of Words (BoW) technique, and then classify the words using Support Vector Machines (SVMs) with a radial basis function kernel. We compare this feature-based approach with a color-based approach on the Caltech-256 benchmark as well as eight different terrain image sets (grass, gravel, pavement, sand, asphalt, floor, mud, and fine gravel). For terrain images, we observe up to 90% accuracy with the feature-based approach. Finally, this online terrain classification system is successfully applied to our small hexapod robot AMOS II. The output of the system providing terrain information is used as an input to its neural locomotion control to trigger an energy-efficient gait while traversing different terrains.


intelligent robots and systems | 2012

Biologically inspired reactive climbing behavior of hexapod robots

Dennis Goldschmidt; Frank Hesse; Florentin Wörgötter; Poramate Manoonpong

Insects, e.g. cockroaches and stick insects, have found fascinating solutions for the problem of locomotion, especially climbing over a large variety of obstacles. Research on behavioral neurobiology has identified key behavioral patterns of these animals (i.e., body flexion, center of mass elevation, and local leg reflexes) necessary for climbing. Inspired by this finding, we develop a neural control mechanism for hexapod robots which generates basic walking behavior and especially enables them to effectively perform reactive climbing behavior. The mechanism is composed of three main neural circuits: locomotion control, reactive backbone joint control, and local leg reflex control. It was developed and tested using a physical simulation environment, and was then successfully transferred to a physical six-legged walking machine, called AMOS II. Experimental results show that the controller allows the robot to overcome obstacles of various heights (e.g., ~ 75% of its leg length, which are higher than those that other comparable legged robots have achieved so far). The generated climbing behavior is also comparable to the one observed in cockroaches.


Frontiers in Neurorobotics | 2014

Biologically-inspired adaptive obstacle negotiation behavior of hexapod robots

Dennis Goldschmidt; Florentin Wörgötter; Poramate Manoonpong

Neurobiological studies have shown that insects are able to adapt leg movements and posture for obstacle negotiation in changing environments. Moreover, the distance to an obstacle where an insect begins to climb is found to be a major parameter for successful obstacle negotiation. Inspired by these findings, we present an adaptive neural control mechanism for obstacle negotiation behavior in hexapod robots. It combines locomotion control, backbone joint control, local leg reflexes, and neural learning. While the first three components generate locomotion including walking and climbing, the neural learning mechanism allows the robot to adapt its behavior for obstacle negotiation with respect to changing conditions, e.g., variable obstacle heights and different walking gaits. By successfully learning the association of an early, predictive signal (conditioned stimulus, CS) and a late, reflex signal (unconditioned stimulus, UCS), both provided by ultrasonic sensors at the front of the robot, the robot can autonomously find an appropriate distance from an obstacle to initiate climbing. The adaptive neural control was developed and tested first on a physical robot simulation, and was then successfully transferred to a real hexapod robot, called AMOS II. The results show that the robot can efficiently negotiate obstacles with a height up to 85% of the robots leg length in simulation and 75% in a real environment.


Artificial Intelligence | 2007

Dynamical systems in the sensorimotor loop: on the interrelation between internal and external mechanisms of evolved robot behavior

Martin Hülse; Steffen Wischmann; Poramate Manoonpong; Arndt von Twickel; Frank Pasemann

This case study demonstrates how the synthesis and the analysis of minimal recurrent neural robot control provide insights into the exploration of embodiment. By using structural evolution, minimal recurrent neural networks of general type were evolved for behavior control. The small size of the neural structures facilitates thorough investigations of behavior relevant neural dynamics and how they relate to interactions of robots within the sensorimotor loop. We argue that a clarification of dynamical neural control mechanisms in a reasonable depth allows quantitative statements about the effects of the sensorimotor loop and suggests general qualitative implications about the embodiment of autonomous robots and biological systems as well.


Frontiers in Neurorobotics | 2015

Distributed recurrent neural forward models with synaptic adaptation and CPG-based control for complex behaviors of walking robots

Sakyasingha Dasgupta; Dennis Goldschmidt; Florentin Wörgötter; Poramate Manoonpong

Walking animals, like stick insects, cockroaches or ants, demonstrate a fascinating range of locomotive abilities and complex behaviors. The locomotive behaviors can consist of a variety of walking patterns along with adaptation that allow the animals to deal with changes in environmental conditions, like uneven terrains, gaps, obstacles etc. Biological study has revealed that such complex behaviors are a result of a combination of biomechanics and neural mechanism thus representing the true nature of embodied interactions. While the biomechanics helps maintain flexibility and sustain a variety of movements, the neural mechanisms generate movements while making appropriate predictions crucial for achieving adaptation. Such predictions or planning ahead can be achieved by way of internal models that are grounded in the overall behavior of the animal. Inspired by these findings, we present here, an artificial bio-inspired walking system which effectively combines biomechanics (in terms of the body and leg structures) with the underlying neural mechanisms. The neural mechanisms consist of (1) central pattern generator based control for generating basic rhythmic patterns and coordinated movements, (2) distributed (at each leg) recurrent neural network based adaptive forward models with efference copies as internal models for sensory predictions and instantaneous state estimations, and (3) searching and elevation control for adapting the movement of an individual leg to deal with different environmental conditions. Using simulations we show that this bio-inspired approach with adaptive internal models allows the walking robot to perform complex locomotive behaviors as observed in insects, including walking on undulated terrains, crossing large gaps, leg damage adaptations, as well as climbing over high obstacles. Furthermore, we demonstrate that the newly developed recurrent network based approach to online forward models outperforms the adaptive neuron forward models, which have hitherto been the state of the art, to model a subset of similar walking behaviors in walking robots.

Collaboration


Dive into the Poramate Manoonpong's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Frank Pasemann

University of Osnabrück

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Timo Nachstedt

University of Göttingen

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge