Portia P. Williams
Emory University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Portia P. Williams.
Journal of Clinical Microbiology | 2001
Christine D. Steward; J. Kamile Rasheed; Susannah K. Hubert; James W. Biddle; Patti M. Raney; Gregory J. Anderson; Portia P. Williams; Kelley L. Brittain; Antonio Oliver; John E. McGowan; Fred C. Tenover
ABSTRACT Extended-spectrum β-lactamases (ESBLs) are enzymes found in gram-negative bacilli that mediate resistance to extended-spectrum cephalosporins and aztreonam. In 1999, the National Committee for Clinical Laboratory Standards (NCCLS) published methods for screening and confirming the presence of ESBLs in Klebsiella pneumoniae, Klebsiella oxytoca, and Escherichia coli. To evaluate the confirmation protocol, we tested 139 isolates of K. pneumoniae that were sent to Project ICARE (Intensive Care Antimicrobial Resistance Epidemiology) from 19 hospitals in 11 U.S. states. Each isolate met the NCCLS screening criteria for potential ESBL producers (ceftazidime [CAZ] or cefotaxime [CTX] MICs were ≥2 μg/ml for all isolates). Initially, 117 (84%) isolates demonstrated a clavulanic acid (CA) effect by disk diffusion (i.e., an increase in CAZ or CTX zone diameters of ≥5 mm in the presence of CA), and 114 (82%) demonstrated a CA effect by broth microdilution (reduction of CAZ or CTX MICs by ≥3 dilutions). For five isolates, a CA effect could not be determined initially by broth microdilution because of off-scale CAZ results. However, a CA effect was observed in two of these isolates by testing cefepime and cefepime plus CA. The cefoxitin MICs for 23 isolates that failed to show a CA effect by broth microdilution were ≥32 μg/ml, suggesting either the presence of an AmpC-type β-lactamase or porin changes that could mask a CA effect. By isoelectric focusing (IEF), 7 of the 23 isolates contained a β-lactamase with a pI of ≥8.3 suggestive of an AmpC-type β-lactamase; 6 of the 7 isolates were shown by PCR to contain bothampC-type and blaOXA genes. The IEF profiles of the remaining 16 isolates showed a variety of β-lactamase bands, all of which had pIs of ≤7.5. All 16 isolates were negative by PCR with multiple primer sets for ampC-type,blaOXA, and blaCTX-Mgenes. In summary, 83.5% of the K. pneumoniae isolates that were identified initially as presumptive ESBL producers were positive for a CA effect, while 5.0% contained β-lactamases that likely masked the CA effect. The remaining 11.5% of the isolates studied contained β-lactamases that did not demonstrate a CA effect. An algorithm based on phenotypic analyses is suggested for evaluation of such isolates.
Emerging Infectious Diseases | 2006
Fred C. Tenover; Rajinder K. Kalsi; Portia P. Williams; Roberta B. Carey; Sheila A. Stocker; David Lonsway; J. Kamile Rasheed; James W. Biddle; John E. McGowan; Bruce A. Hanna
Detecting β-lactamase–mediated carbapenem resistance among Klebsiella pneumoniae isolates and other Enterobacteriaceae is an emerging problem. In this study, 15 blaKPC-positive Klebsiella pneumoniae that showed discrepant results for imipenem and meropenem from 4 New York City hospitals were characterized by isoelectric focusing; broth microdilution (BMD); disk diffusion (DD); and MicroScan, Phoenix, Sensititre, VITEK, and VITEK 2 automated systems. All 15 isolates were either intermediate or resistant to imipenem and meropenem by BMD; 1 was susceptible to imipenem by DD. MicroScan and Phoenix reported 1 (6.7%) and 2 (13.3%) isolates, respectively, as imipenem susceptible. VITEK and VITEK 2 reported 10 (67%) and 5 (33%) isolates, respectively, as imipenem susceptible. By Sensititre, 13 (87%) isolates were susceptible to imipenem, and 12 (80%) were susceptible to meropenem. The VITEK 2 Advanced Expert System changed 2 imipenem MIC results from >16 μg/mL to <2 μg/mL but kept the interpretation as resistant. The recognition of carbapenem-resistant K. pneumoniae continues to challenge automated susceptibility systems.
Journal of Clinical Microbiology | 2005
Christine D. Steward; Patti M. Raney; Allison K. Morrell; Portia P. Williams; Linda K. McDougal; Laura A. Jevitt; John E. McGowan; Fred C. Tenover
ABSTRACT Disk diffusion and broth microdilution (BMD) were used to perform clindamycin (CLI) induction testing on 128 selected nonduplicate isolates of Staphylococcus aureus. Disk diffusion testing involved placing CLI and erythromycin (ERY) disks approximately 12 mm apart (measured edge to edge) on a Mueller-Hinton agar plate that had been inoculated with an S. aureus isolate; the plate was then incubated for 16 to 18 h. Two distinct induction phenotypes (labeled D and D+) and four noninduction phenotypes (designated as negative [Neg], hazy D zone [HD], resistant [R], and susceptible [S]) were observed in disk diffusion results. A clear, D-shaped zone of inhibition around the CLI disk was designated as the D phenotype and was observed for 21 isolates while a D-shaped zone containing inner colonies growing up to the CLI disk was designated as D+ (17 isolates). In addition, 10 isolates were CLI susceptible and ERY resistant but were not inducible and showed no blunting of the CLI zone (Neg phenotype). Isolates that were CLI and ERY resistant (constitutive macrolide-lincosamide-streptogramin B resistance) demonstrated either a double zone of inhibition with an inner ring of reduced growth up to the edge of the disks (HD phenotype; 33 isolates) or solid growth around the CLI and ERY disks (R phenotype; 16 isolates). Finally, 31 isolates were susceptible by disk testing to both CLI and ERY (S phenotype). PCR results showed that isolates with a D phenotype harbored ermA, isolates with a D+ phenotype contained either ermC (16 isolates) or ermA and ermC (one isolate), and all 10 isolates with a Neg phenotype contained msrA. All isolates with an HD or R phenotype harbored at least one erm gene. Isolates showing the D+ phenotype by disk diffusion were also detected by BMD using a variety of CLI and ERY concentrations; however, isolates with the D phenotype were more difficult to detect by BMD and will likely require optimization of ERY and CLI concentrations in multilaboratory studies to ensure adequate sensitivity. Thus, at present, disk diffusion is the preferred method for testing S. aureus isolates for inducible CLI resistance.
Journal of Clinical Microbiology | 2003
Fred C. Tenover; Patti M. Raney; Portia P. Williams; J. Kamile Rasheed; James W. Biddle; Antonio Oliver; Scott K. Fridkin; Laura A. Jevitt; John E. McGowan
ABSTRACT To determine whether confirmatory tests for extended-spectrum β-lactamase (ESBL) production in Escherichia coli are necessary, we selected 131 E. coli isolates that met the National Committee for Clinical Laboratory Standards (NCCLS) screening criteria for potential ESBL production from the Project ICARE (Intensive Care Antimicrobial Resistance Epidemiology) strain collection. For all 131 isolates, the broth microdilution (BMD) MIC of at least one extended-spectrum cephalosporin was ≥2 μg/ml. For 21 of 131 (16%) isolates, the ESBL confirmatory test was positive; i.e., the BMD MICs of ceftazidime or cefotaxime decreased by ≥3 doubling dilutions in the presence of clavulanic acid (CA) or the disk diffusion zone diameters increased by ≥5 mm around ceftazidime or cefotaxime disks in the presence of CA. All 21 isolates were shown by PCR to contain at least one of the genes blaTEM, blaSHV, and blaOXA, and in isoelectric focusing (IEF) tests, all isolates demonstrated at least one β-lactamase band consistent with a TEM, SHV, or OXA enzyme. Of the 21 isolates, 3 showed a CA effect for cefotaxime by BMD but not by disk diffusion testing. A total of 59 (45%) of the 131 isolates demonstrated decreased susceptibility to cefpodoxime alone (MIC = 2 to 4 μg/ml), and none had a positive ESBL confirmatory test result. These were classified as false positives according to ESBL screen test results. For the remaining 51 (39%) isolates, the cefpodoxime MICs ranged from 16 to >128 μg/ml and the MICs for the other extended-spectrum cephalosporins were highly variable. All 51 isolates gave negative ESBL confirmatory test results. Most showed IEF profiles consistent with production of both a TEM and an AmpC β-lactamase, and representative isolates of several phenotypic groups showed changes in porin profiles; these 51 isolates were considered true negatives. In all, only 16% of 131 E. coli isolates identified as potential ESBL producers by the current NCCLS screening criteria were confirmed as ESBL producers. Thus, changing the interpretation of extended-spectrum cephalosporins and aztreonam results from the susceptible to the resistant category without confirming the presence of an ESBL phenotype would lead to a large percentage of false resistance results and is not recommended. However, by increasing the cefpodoxime MIC screening breakpoint to ≥8 μg/ml, 45% of the false-positive results could be eliminated. NCCLS has incorporated this change in the cefpodoxime screening breakpoint in its recent documents.
Journal of Clinical Microbiology | 2004
Mitchell J. Schwaber; Patti M. Raney; J. Kamile Rasheed; James W. Biddle; Portia P. Williams; John E. McGowan; Fred C. Tenover
ABSTRACT NCCLS screening and confirmation methods for detecting extended-spectrum β-lactamases (ESBLs) apply only to Escherichia coli and Klebsiella spp., yet ESBLs have been found in other members of the family Enterobacteriaceae. We evaluated the effectiveness of NCCLS methods for detecting ESBLs in 690 gram-negative isolates of Enterobacteriaceae that excluded E. coli, Klebsiella pneumoniae, and Klebsiella oxytoca. Isolates were collected between January 1996 and June 1999 from 53 U.S. hospitals participating in Project ICARE (Intensive Care Antimicrobial Resistance Epidemiology). The antimicrobial susceptibility patterns of the isolates were determined by using the NCCLS broth microdilution method (BMD), and those isolates for which the MIC of ceftazidime, cefotaxime, ceftriaxone, or aztreonam was ≥2 μg/ml or the MIC of cefpodoxime was ≥8 μg/ml (positive ESBL screen test) were further tested for a clavulanic acid (CA) effect by BMD and the disk diffusion method (confirmation tests). Although 355 (51.4%) of the isolates were ESBL screen test positive, only 15 (2.2%) showed a CA effect. Since 3 of the 15 isolates were already highly resistant to the five NCCLS indicator drugs, ESBL detection would have an impact on the reporting of only 1.7% of the isolates in the study. Only 6 of the 15 isolates that showed a CA effect contained a blaTEM, blaSHV, blaCTX-M, or blaOXA β-lactamase gene as determined by PCR (with a corresponding isoelectric focusing pattern). Extension of the NCCLS guidelines for ESBL detection to Enterobacteriaceae other than E. coli and Klebsiella spp. does not appear to be warranted in the United States at present, since the test has poor specificity for this population and would result in changes in categorical interpretations for only 1.7% of Enterobacteriaceae tested.
Microbial Drug Resistance | 2003
Laura A. Jevitt; Amanda J. Smith; Portia P. Williams; Patti M. Raney; John E. McGowan; Fred C. Tenover
We assessed the in vitro activities of daptomycin, linezolid, and quinupristin-dalfopristin (QD) against a contemporary challenge panel of 88 staphylococcal and 90 enterococcal isolates. The staphylococci selected included vancomycin-intermediate Staphylococcus aureus (VISA), methicillin-resistant S. aureus, and coagulasenegative staphylococci. Enterococcal isolates included vancomycin-resistant Enterococcus faecium (VREF) containing either vanA, vanB1, or vanD. The MICs of daptomycin, linezolid, and QD were determined using commercial broth microdilution panels. All three VISA isolates were susceptible to daptomycin, linezolid, and QD. QD was the most active agent against staphylococcal isolates (MIC50 < or = 0.5 microg/ml and MIC90 = 1 microg/ml), including those with decreased susceptibility to vancomycin. QD was also the most active agent against VREF (MIC90 < or = 0.5 microg/ml). No differences were seen for susceptibility of vanA, vanB1, and vanD VREF strains for daptomycin, linezolid, or QD. Daptomycin was the most effective against E. faecalis. On the basis of manufacturer-suggested interpretive criteria, 92% of isolates were susceptible (MIC90 = 4 microg/ml). All isolates tested were susceptible to at least one antimicrobial agent for which interpretive criteria have been defined. Population analysis of three S. aureus isolates for which the daptomycin MICs were 8 microg/ml showed a pattern of homogeneous resistance.
Journal of Clinical Microbiology | 2003
Christine D. Steward; Jasmine M. Mohammed; Jana M. Swenson; Sheila A. Stocker; Portia P. Williams; Robert P. Gaynes; John E. McGowan; Fred C. Tenover
ABSTRACT From January 1996 to May 1999, Project ICARE (Intensive Care Antimicrobial Resistance Epidemiology) received 448 nonduplicate clinical isolates of Enterobacteriaceae and Pseudomonas aeruginosa that were reported to be imipenem intermediate or resistant. However, broth microdilution (BMD) confirmatory testing at the Project ICARE central laboratory confirmed this result in only 11 of 123 (8.9%) Enterobacteriaceae isolates and 241 of 325 (74.2%) P. aeruginosa isolates. To investigate this overdetection of imipenem resistance, we tested 204 selected isolates from the Project ICARE collection plus five imipenem-resistant challenge strains at the Centers for Disease Control and Prevention against imipenem and meropenem by agar dilution, disk diffusion, Etest (AB BIODISK North America, Inc., Piscataway, N.J.), two MicroScan WalkAway conventional panels (Neg MIC Plus 3 and Neg Urine Combo 3) (Dade MicroScan, Inc., West Sacramento, Calif.), and two Vitek cards (GNS-116 containing meropenem and GNS-F7 containing imipenem) (bioMérieux Vitek, Inc., Durham, N.C.). The results of each test method were compared to the results of BMD testing using in-house-prepared panels. Seven imipenem-resistant and five meropenem-resistant isolates of Enterobacteriaceae and 43 imipenem-resistant and 21 meropenem-resistant isolates of P. aeruginosa were identified by BMD. For Enterobacteriaceae, the imipenem and meropenem test methods produced low numbers of very major and major errors. All test systems in the study produced low numbers of very major and major errors when P. aeruginosa was tested against imipenem and meropenem, except for Vitek testing (major error rate for imipenem, 20%). Further testing conducted in 11 of the participating ICARE hospital laboratories failed to pinpoint the factors responsible for the initial overdetection of imipenem resistance. However, this study demonstrated that carbapenem testing difficulties do exist and that laboratories should consider using a second, independent antimicrobial susceptibility testing method to validate carbapenem-intermediate and -resistant results.
Journal of Clinical Microbiology | 2007
Fred C. Tenover; Portia P. Williams; Sheila A. Stocker; Angela Thompson; Leigh Ann Clark; Brandi Limbago; Roberta B. Carey; Susan M. Poppe; Dean Shinabarger; John E. McGowan
ABSTRACT A challenge panel of enterococci (n = 50) and staphylococci (n = 50), including 17 and 15 isolates that were nonsusceptible to linezolid, respectively, were tested with the Clinical and Laboratory Standards Institute broth microdilution and disk diffusion reference methods. In addition, all 100 isolates were tested in parallel by Etest (AB Biodisk, Solna, Sweden), MicroScan WalkAway (Dade, West Sacramento, CA), BD Phoenix (BD Diagnostic Systems, Sparks, MD), VITEK (bioMérieux, Durham, NC), and VITEK 2 (bioMérieux) by using the manufacturers’ protocols. Compared to the results of the broth microdilution method for detecting linezolid-nonsusceptible staphylococci and enterococci, MicroScan results showed the highest category agreement (96.0%). The overall categorical agreement levels for VITEK 2, Etest, Phoenix, disk diffusion, and VITEK were 93.0%, 90.0%, 89.6%, 88.0%, and 85.9%, respectively. The essential agreement levels (results within ±1 doubling dilution of the MIC determined by the reference method) for MicroScan, Phoenix, VITEK 2, Etest, and VITEK were 99.0%, 95.8%, 92.0%, 92.0%, and 85.9%, respectively. The very major error rates for staphylococci were the highest for VITEK (35.7%), Etest (40.0%), and disk diffusion (53.3%), although the total number of resistant isolates tested was small. The very major error rate for enterococci with VITEK was 20.0%. Three systems (MicroScan, VITEK, and VITEK 2) provided no interpretations of nonsusceptible results for staphylococci. These data, from a challenge panel of isolates, illustrate that the recent emergence of linezolid-nonsusceptible staphylococci and enterococci is providing a challenge for many susceptibility testing systems.
The American Journal of the Medical Sciences | 1989
Jeannette Guarner; Carlos del Rio; Portia P. Williams; John E. McGowan
ABSTRACT The authors present a case of a patient undergoing continuous ambulatory peritoneal dialysis (CAPD) who developed peritonitis with Curvularia lunata and gram negative Enterobacteriaceae . A review of the literature indicates that human infections caused by Curvularia are uncommon despite the ubiquity of the organism in the environment. In this case, the organism was present in the Tenckhoif catheter, lacking attachment to it, but obstructing the flow. Treatment of fungal peritonitis during CAPD is discussed.
Journal of Clinical Microbiology | 2007
Nimalie D. Stone; Caroline M. O'Hara; Portia P. Williams; John E. McGowan; Fred C. Tenover
ABSTRACT We compared the antimicrobial susceptibility testing results generated by disk diffusion and the VITEK 2 automated system with the results of the Clinical and Laboratory Standards Institute (CLSI) broth microdilution (BMD) reference method for 61 isolates of unusual species of Enterobacteriaceae. The isolates represented 15 genera and 26 different species, including Buttiauxella, Cedecea, Kluyvera, Leminorella, and Yokenella. Antimicrobial agents included aminoglycosides, carbapenems, cephalosporins, fluoroquinolones, penicillins, and trimethoprim-sulfamethoxazole. CLSI interpretative criteria for Enterobacteriaceae were used. Of the 12 drugs tested by BMD and disk diffusion, 10 showed >95% categorical agreement (CA). CA was lower for ampicillin (80.3%) and cefazolin (77.0%). There were 3 very major errors (all with cefazolin), 1 major error (also with cefazolin), and 26 minor errors. Of the 40 isolates (representing 12 species) that could be identified with the VITEK 2 database, 36 were identified correctly to species level, 1 was identified to genus level only, and 3 were reported as unidentified. VITEK 2 generated MIC results for 42 (68.8%) of 61 isolates, but categorical interpretations (susceptible, intermediate, and resistant) were provided for only 22. For the 17 drugs tested by both BMD and VITEK 2, essential agreement ranged from 80.9 to 100% and CA ranged from 68.2% (ampicillin) to 100%; thirteen drugs exhibited 100% CA. In summary, disk diffusion provides a reliable alternative to BMD for testing of unusual Enterobacteriaceae, some of which cannot be tested, or produce incorrect results, by automated methods.