Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Poyil Pratheeshkumar is active.

Publication


Featured researches published by Poyil Pratheeshkumar.


Toxicology and Applied Pharmacology | 2013

Epithelial-mesenchymal transition during oncogenic transformation induced by hexavalent chromium involves reactive oxygen species-dependent mechanism in lung epithelial cells.

Songze Ding; Yu-Xiu Yang; Xiu-Ling Li; Audrey Michelli-Rivera; Shuang-Yin Han; Lei Wang; Poyil Pratheeshkumar; Xin Wang; Jian Lu; Yuanqin Yin; Amit Budhraja; Andrew Hitron

Hexavalent chromium [Cr(VI)] is an important human carcinogen associated with pulmonary diseases and lung cancer. Exposure to Cr(VI) induces DNA damage, cell morphological change and malignant transformation in human lung epithelial cells. Despite extensive studies, the molecular mechanisms remain elusive, it is also not known if Cr(VI)-induced transformation might accompany with invasive properties to facilitate metastasis. We aimed to study Cr(VI)-induced epithelial-mesenchymal transition (EMT) and invasion during oncogenic transformation in lung epithelial cells. The results showed that Cr(VI) at low doses represses E-cadherin mRNA and protein expression, enhances mesenchymal marker vimentin expression and transforms the epithelial cell into fibroblastoid morphology. Cr(VI) also increases cell invasion and promotes colony formation. Further studies indicated that Cr(VI) uses multiple mechanisms to repress E-cadherin expression, including activation of E-cadherin repressors such as Slug, ZEB1, KLF8 and enhancement the binding of HDAC1 in E-cadherin gene promoter, but DNA methylation is not responsible for the loss of E-cadherin. Catalase reduces Cr(VI)-induced E-cadherin and vimentin protein expression, attenuates cell invasion in matrigel and colony formation on soft agar. These results demonstrate that exposure to a common human carcinogen, Cr(VI), induces EMT and invasion during oncogenic transformation in lung epithelial cells and implicate in cancer metastasis and prevention.


Free Radical Biology and Medicine | 2012

Oxidative stress and metal carcinogenesis

Jeong-Chae Lee; Young-Ok Son; Poyil Pratheeshkumar; Xianglin Shi

Occupational and environmental exposures to metals are closely associated with an increased risk of various cancers. Although carcinogenesis caused by metals has been intensively investigated, the exact mechanisms of action are still unclear. Accumulating evidence indicates that reactive oxygen species (ROS) generated by metals play important roles in the etiology of degenerative and chronic diseases. This review covers recent advances in (1) metal-induced generation of ROS and the related mechanisms; (2) the relationship between metal-mediated ROS generation and carcinogenesis; and (3) the signaling proteins involved in metal-induced carcinogenesis, especially intracellular reduction-oxidation-sensitive molecules.


PLOS ONE | 2012

Quercetin inhibits angiogenesis mediated human prostate tumor growth by targeting VEGFR- 2 regulated AKT/mTOR/P70S6K signaling pathways.

Poyil Pratheeshkumar; Amit Budhraja; Young-Ok Son; Xin Wang; Zhuo Zhang; Songze Ding; Lei Wang; Andrew Hitron; Jeong-Chae Lee; Mei Xu; Gang Chen; Jia Luo; Xianglin Shi

Angiogenesis is a crucial step in the growth and metastasis of cancers, since it enables the growing tumor to receive oxygen and nutrients. Cancer prevention using natural products has become an integral part of cancer control. We studied the antiangiogenic activity of quercetin using ex vivo, in vivo and in vitro models. Rat aortic ring assay showed that quercetin at non-toxic concentrations significantly inhibited microvessel sprouting and exhibited a significant inhibition in the proliferation, migration, invasion and tube formation of endothelial cells, which are key events in the process of angiogenesis. Most importantly, quercetin treatment inhibited ex vivo angiogenesis as revealed by chicken egg chorioallantoic membrane assay (CAM) and matrigel plug assay. Western blot analysis showed that quercetin suppressed VEGF induced phosphorylation of VEGF receptor 2 and their downstream protein kinases AKT, mTOR, and ribosomal protein S6 kinase in HUVECs. Quercetin (20 mg/kg/d) significantly reduced the volume and the weight of solid tumors in prostate xenograft mouse model, indicating that quercetin inhibited tumorigenesis by targeting angiogenesis. Furthermore, quercetin reduced the cell viability and induced apoptosis in prostate cancer cells, which were correlated with the downregulation of AKT, mTOR and P70S6K expressions. Collectively the findings in the present study suggest that quercetin inhibits tumor growth and angiogenesis by targeting VEGF-R2 regulated AKT/mTOR/P70S6K signaling pathway, and could be used as a potential drug candidate for cancer therapy.


Toxicology and Applied Pharmacology | 2013

Quercitrin protects skin from UVB-induced oxidative damage

Yuanqin Yin; Wenqi Li; Young-Ok Son; Lijuan Sun; Jian Lu; Donghern Kim; Xin Wang; Hua Yao; Lei Wang; Poyil Pratheeshkumar; Andrew Hitron; Jia Luo; Ning Gao; Xianglin Shi; Zhuo Zhang

Exposure of the skin to ultraviolet B (UVB) radiation causes oxidative damage to skin, resulting in sunburn, photoaging, and skin cancer. It is generally believed that the skin damage induced by UV irradiation is a consequence of generation of reactive oxygen species (ROS). Recently, there is an increased interest in the use of natural products as chemopreventive agents for non-melanoma skin cancer (NMSC) due to their antioxidants and anti-inflammatory properties. Quercitrin, glycosylated form of quercetin, is the most common flavonoid in nature with antioxidant properties. The present study investigated the possible beneficial effects of quercitrin to inhibit UVB irradiation-induced oxidative damage in vitro and in vivo. Our results showed that quercitrin decreased ROS generation induced by UVB irradiation in JB6 cells. Quercitrin restored catalase expression and GSH/GSSG ratio reduced by UVB exposure, two major antioxidant enzymes, leading to reductions of oxidative DNA damage and apoptosis and protection of the skin from inflammation caused by UVB exposure. The present study demonstrated that quercitrin functions as an antioxidant against UVB irradiation-induced oxidative damage to skin.


Pharmaceutical Biology | 2011

Inhibition of tumor progression by naturally occurring terpenoids.

Girija Kuttan; Poyil Pratheeshkumar; Kanjoormana Aryan Manu; Ramadasan Kuttan

Context: Cancer is a major public health problem in India and many other parts of the world. Its two main characteristics are uncontrolled cell growth and metastasis. Natural products represent a rich source of compounds that have found many applications in various fields of medicines and therapy including cancer therapy. Effective ingredients in several plant-derived medicinal extracts are terpenoid compounds and many terpenes have biological activities and are used for the treatment of human diseases. Objectives: This review attempted to collect all available published scientific literature of eight naturally occurring terpenoids and their effect on inhibition of tumor progression. Methods: The present review is about eight potent naturally occurring terpenoids that have been studied for their pharmacological properties in our lab and this review includes 130 references compiled from all major databases. Results: Literature survey revealed that triterpenoids, such as glycyrrhizic acid, ursolic acid, oleanolic acid, and nomilin, the diterpene andrographolide, and the monoterpenoids like limonene and perillic acid had shown immunomodulatory and antitumor activities. All of them could induce apoptosis in various cancer cells by activating various proapoptotic signaling cascades. Many of these terpenoids found to inhibit metastatic progression and tumor-induced angiogenesis. The molecular mechanisms that involved in these activities include inhibition of various oncogenic and anti-apoptotic signaling pathways and suppression or nuclear translocation of various transcription factors including nuclear factor kappa B (NF-κB). Conclusion: The chemopreventive and chemoprotective effects of these compounds point toward their possible role in modern anticancer therapies.


PLOS ONE | 2012

Luteolin Inhibits Human Prostate Tumor Growth by Suppressing Vascular Endothelial Growth Factor Receptor 2-Mediated Angiogenesis

Poyil Pratheeshkumar; Young-Ok Son; Amit Budhraja; Xin Wang; Songze Ding; Lei Wang; Andrew Hitron; Jeong-Chae Lee; Donghern Kim; Sasidharan Padmaja Divya; Gang Chen; Zhuo Zhang; Jia Luo; Xianglin Shi

Angiogenesis, the formation of new blood vessels from pre-existing vascular beds, is essential for tumor growth, invasion, and metastasis. Luteolin is a common dietary flavonoid found in fruits and vegetables. We studied the antiangiogenic activity of luteolin using in vitro, ex vivo, and in vivo models. In vitro studies using rat aortic ring assay showed that luteolin at non-toxic concentrations significantly inhibited microvessel sprouting and proliferation, migration, invasion and tube formation of endothelial cells, which are key events in the process of angiogenesis. Luteolin also inhibited ex vivo angiogenesis as revealed by chicken egg chorioallantoic membrane assay (CAM) and matrigel plug assay. Gelatin zymographic analysis demonstrated the inhibitory effect of luteolin on the activation of matrix metalloproteinases MMP-2 and MMP-9. Western blot analysis showed that luteolin suppressed VEGF induced phosphorylation of VEGF receptor 2 and their downstream protein kinases AKT, ERK, mTOR, P70S6K, MMP-2, and MMP-9 in HUVECs. Proinflammatory cytokines such as IL-1β, IL-6, IL-8, and TNF-α level were significantly reduced by the treatment of luteolin in PC-3 cells. Luteolin (10 mg/kg/d) significantly reduced the volume and the weight of solid tumors in prostate xenograft mouse model, indicating that luteolin inhibited tumorigenesis by targeting angiogenesis. CD31 and CD34 immunohistochemical staining further revealed that the microvessel density could be remarkably suppressed by luteolin. Moreover, luteolin reduced cell viability and induced apoptosis in prostate cancer cells, which were correlated with the downregulation of AKT, ERK, mTOR, P70S6K, MMP-2, and MMP-9 expressions. Taken together, our findings demonstrate that luteolin inhibits human prostate tumor growth by suppressing vascular endothelial growth factor receptor 2-mediated angiogenesis.


Anti-cancer Agents in Medicinal Chemistry | 2012

Cancer prevention with promising natural products: mechanisms of action and molecular targets.

Poyil Pratheeshkumar; Chakkenchath Sreekala; Zhuo Zhang; Amit Budhraja; Songze Ding; Young-Ok Son; Xin Wang; Andrew Hitron; Kim Hyun-Jung; Lei Wang; Jeong-Chae Lee; Xianglin Shi

Cancer is the second leading cause of death worldwide. There is greater need for more effective and less toxic therapeutic and preventive strategies. Natural products are becoming an important research area for novel and bioactive molecules for drug discovery. Phytochemicals and dietary compounds have been used for the treatment of cancer throughout history due to their safety, low toxicity, and general availability. Many active phytochemicals are in human clinical trials. Studies have indicated that daily consumption of dietary phytochemicals have cancer protective effects against carcinogens. They can inhibit, delay, or reverse carcinogenesis by inducing detoxifying and antioxidant enzymes systems, regulating inflammatory and proliferative signaling pathways, and inducing cell cycle arrest and apoptosis. Epidemiological studies have also revealed that high dietary intakes of fruits and vegetables reduce the risk of cancer. This review discusses potential natural cancer preventive compounds, their molecular targets, and their mechanisms of actions.


Journal of Biological Chemistry | 2014

Nrf2/p62 Signaling in Apoptosis Resistance and Its Role in Cadmium-induced Carcinogenesis

Young-Ok Son; Poyil Pratheeshkumar; Ram Vinod Roy; John Andrew Hitron; Lei Wang; Zhuo Zhang; Xianglin Shi

Background: Cadmium-transformed cells have a property of apoptosis resistance. Results: Cadmium-transformed cells express high antioxidant enzymes and antiapoptotic proteins. Conclusion: The constitutive p62 and Nrf2 expressions of transformed cells result in a decrease in ROS generation, apoptosis resistance, and tumorigenesis. Significance: Constitutive expression of Nrf2/p62 is important in cadmium carcinogenesis and its possible prevention using these proteins. The cadmium-transformed human lung bronchial epithelial BEAS-2B cells exhibit a property of apoptosis resistance as compared with normal non-transformed BEAS-2B cells. The level of basal reactive oxygen species (ROS) is extremely low in transformed cells in correlation with elevated expressions of both antioxidant enzymes (catalase, SOD1, and SOD2) and antiapoptotic proteins (Bcl-2/Bcl-xL). Moreover, Nrf2 and p62 are highly expressed in these transformed cells. The knockdown of Nrf2 or p62 by siRNA enhances ROS levels and cadmium-induced apoptosis. The binding activities of Nrf2 on the antioxidant response element promoter regions of p62/Bcl-2/Bcl-xL were dramatically increased in the cadmium-exposed transformed cells. Cadmium exposure increased the formation of LC3-II and the frequency of GFP-LC3 punctal cells in non-transformed BEAS-2B cells, whereas these increases are not shown in transformed cells, an indication of autophagy deficiency of transformed cells. Furthermore, the expression levels of Nrf2 and p62 are dramatically increased during chronic long term exposure to cadmium in the BEAS-2B cells as well as antiapoptotic proteins and antioxidant enzymes. These proteins are overexpressed in the tumor tissues derived from xenograft mouse models. Moreover, the colony growth is significantly attenuated in the transformed cells by siRNA transfection specific for Nrf2 or p62. Taken together, this study demonstrates that cadmium-transformed cells have acquired autophagy deficiency, leading to constitutive p62 and Nrf2 overexpression. These overexpressions up-regulate the antioxidant proteins catalase and SOD and the antiapoptotic proteins Bcl-2 and Bcl-xL. The final consequences are decrease in ROS generation, apoptotic resistance, and increased cell survival, proliferation, and tumorigenesis.


Toxicology and Applied Pharmacology | 2014

Luteolin inhibits Cr(VI)-induced malignant cell transformation of human lung epithelial cells by targeting ROS mediated multiple cell signaling pathways

Poyil Pratheeshkumar; Young-Ok Son; Sasidharan Padmaja Divya; Ram Vinod Roy; John Andrew Hitron; Lei Wang; Donghern Kim; Jin Dai; Padmaja Asha; Zhuo Zhang; Yitao Wang; Xianglin Shi

Hexavalent chromium [Cr(VI)] is a well-known human carcinogen associated with the incidence of lung cancer. Inhibition of metal induced carcinogenesis by a dietary antioxidant is a novel approach. Luteolin, a natural dietary flavonoid found in fruits and vegetables, possesses potent antioxidant and anti-inflammatory activity. We found that short term exposure of human bronchial epithelial cells (BEAS-2B) to Cr(VI) (5μM) showed a drastic increase in ROS generation, NADPH oxidase (NOX) activation, lipid peroxidation, and glutathione depletion, which were significantly inhibited by the treatment with luteolin in a dose dependent manner. Treatment with luteolin decreased AP-1, HIF-1α, COX-2, and iNOS promoter activity induced by Cr(VI) in BEAS-2B cells. In addition, luteolin protected BEAS-2B cells from malignant transformation induced by chronic Cr(VI) exposure. Moreover, luteolin also inhibited the production of pro-inflammatory cytokines (IL-1β, IL-6, IL-8, TNF-α) and VEGF in chronic Cr(VI) exposed BEAS-2B cells. Western blot analysis showed that luteolin inhibited multiple gene products linked to survival (Akt, Fak, Bcl-2, Bcl-xL), inflammation (MAPK, NF-κB, COX-2, STAT-3, iNOS, TNF-α) and angiogenesis (HIF-1α, VEGF, MMP-9) in chronic Cr(VI) exposed BEAS-2B cells. Nude mice injected with BEAS-2B cells chronically exposed to Cr(VI) in the presence of luteolin showed reduced tumor incidence compared to Cr(VI) alone treated group. Overexpression of catalase (CAT) or SOD2, eliminated Cr(VI)-induced malignant transformation. Overall, our results indicate that luteolin protects BEAS-2B cells from Cr(VI)-induced carcinogenesis by scavenging ROS and modulating multiple cell signaling mechanisms that are linked to ROS. Luteolin, therefore, serves as a potential chemopreventive agent against Cr(VI)-induced carcinogenesis.


Toxicological Sciences | 2015

Arsenic Induces Insulin Resistance in Mouse Adipocytes and Myotubes Via Oxidative Stress-Regulated Mitochondrial Sirt3-FOXO3a Signaling Pathway

Sasidharan Padmaja Divya; Poyil Pratheeshkumar; Young-Ok Son; Ram Vinod Roy; John Andrew Hitron; Donghern Kim; Jin Dai; Lei Wang; Padmaja Asha; Bin Huang; Mei Xu; Jia Luo; Zhuo Zhang

Chronic exposure to arsenic via drinking water is associated with an increased risk for development of type 2 diabetes mellitus (T2DM). This study investigates the role of mitochondrial oxidative stress protein Sirtuin 3 (Sirt3) and its targeting proteins in chronic arsenic-induced T2DM in mouse adipocytes and myotubes. The results show that chronic arsenic exposure significantly decreased insulin-stimulated glucose uptake (ISGU) in correlation with reduced expression of insulin-regulated glucose transporter type 4 (Glut4). Expression of Sirt3, a mitochondrial deacetylase, was dramatically decreased along with its associated transcription factor, forkhead box O3 (FOXO3a) upon arsenic exposure. A decrease in mitochondrial membrane potential (Δψm) was observed in both 3T3L1 adipocytes and C2C12 myotubes treated by arsenic. Reduced FOXO3a activity by arsenic exhibited a decreased binding affinity to the promoters of both manganese superoxide dismutase (MnSOD) and peroxisome proliferator-activated receptor-gamma coactivator (PGC)-1α, a broad and powerful regulator of reactive oxygen species (ROS) metabolism. Forced expression of Sirt3 or MnSOD in mouse myotubes elevated Δψm and restored ISGU inhibited by arsenic exposure. Our results suggest that Sirt3/FOXO3a/MnSOD signaling plays a significant role in the inhibition of ISGU induced by chronic arsenic exposure.

Collaboration


Dive into the Poyil Pratheeshkumar's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Zhuo Zhang

University of Kentucky

View shared research outputs
Top Co-Authors

Avatar

Lei Wang

University of Kentucky

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Xin Wang

Xi'an Jiaotong University

View shared research outputs
Top Co-Authors

Avatar

Jia Luo

University of Kentucky

View shared research outputs
Researchain Logo
Decentralizing Knowledge