Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Prabina Kumar Meher is active.

Publication


Featured researches published by Prabina Kumar Meher.


Scientific Reports | 2017

Predicting antimicrobial peptides with improved accuracy by incorporating the compositional, physico-chemical and structural features into Chou’s general PseAAC

Prabina Kumar Meher; Tanmaya Kumar Sahu; Varsha Saini; A. R. Rao

Antimicrobial peptides (AMPs) are important components of the innate immune system that have been found to be effective against disease causing pathogens. Identification of AMPs through wet-lab experiment is expensive. Therefore, development of efficient computational tool is essential to identify the best candidate AMP prior to the in vitro experimentation. In this study, we made an attempt to develop a support vector machine (SVM) based computational approach for prediction of AMPs with improved accuracy. Initially, compositional, physico-chemical and structural features of the peptides were generated that were subsequently used as input in SVM for prediction of AMPs. The proposed approach achieved higher accuracy than several existing approaches, while compared using benchmark dataset. Based on the proposed approach, an online prediction server iAMPpred has also been developed to help the scientific community in predicting AMPs, which is freely accessible at http://cabgrid.res.in:8080/amppred/. The proposed approach is believed to supplement the tools and techniques that have been developed in the past for prediction of AMPs.


PLOS ONE | 2016

Genome Wide Single Locus Single Trait, Multi-Locus and Multi-Trait Association Mapping for Some Important Agronomic Traits in Common Wheat (T. aestivum L.)

Vandana Jaiswal; Vijay Gahlaut; Prabina Kumar Meher; Reyazul Rouf Mir; J.P. Jaiswal; A. R. Rao; H. S. Balyan; Pushpendra K. Gupta

Genome wide association study (GWAS) was conducted for 14 agronomic traits in wheat following widely used single locus single trait (SLST) approach, and two recent approaches viz. multi locus mixed model (MLMM), and multi-trait mixed model (MTMM). Association panel consisted of 230 diverse Indian bread wheat cultivars (released during 1910–2006 for commercial cultivation in different agro-climatic regions in India). Three years phenotypic data for 14 traits and genotyping data for 250 SSR markers (distributed across all the 21 wheat chromosomes) was utilized for GWAS. Using SLST, as many as 213 MTAs (p ≤ 0.05, 129 SSRs) were identified for 14 traits, however, only 10 MTAs (~9%; 10 out of 123 MTAs) qualified FDR criteria; these MTAs did not show any linkage drag. Interestingly, these genomic regions were coincident with the genomic regions that were already known to harbor QTLs for same or related agronomic traits. Using MLMM and MTMM, many more QTLs and markers were identified; 22 MTAs (19 QTLs, 21 markers) using MLMM, and 58 MTAs (29 QTLs, 40 markers) using MTMM were identified. In addition, 63 epistatic QTLs were also identified for 13 of the 14 traits, flag leaf length (FLL) being the only exception. Clearly, the power of association mapping improved due to MLMM and MTMM analyses. The epistatic interactions detected during the present study also provided better insight into genetic architecture of the 14 traits that were examined during the present study. Following eight wheat genotypes carried desirable alleles of QTLs for one or more traits, WH542, NI345, NI170, Sharbati Sonora, A90, HW1085, HYB11, and DWR39 (Pragati). These genotypes and the markers associated with important QTLs for major traits can be used in wheat improvement programs either using marker-assisted recurrent selection (MARS) or pseudo-backcrossing method.


BMC Bioinformatics | 2014

A statistical approach for 5′ splice site prediction using short sequence motifs and without encoding sequence data

Prabina Kumar Meher; Tanmaya Kumar Sahu; A. R. Rao; S. D. Wahi

BackgroundMost of the approaches for splice site prediction are based on machine learning techniques. Though, these approaches provide high prediction accuracy, the window lengths used are longer in size. Hence, these approaches may not be suitable to predict the novel splice variants using the short sequence reads generated from next generation sequencing technologies. Further, machine learning techniques require numerically encoded data and produce different accuracy with different encoding procedures. Therefore, splice site prediction with short sequence motifs and without encoding sequence data became a motivation for the present study.ResultsAn approach for finding association among nucleotide bases in the splice site motifs is developed and used further to determine the appropriate window size. Besides, an approach for prediction of donor splice sites using sum of absolute error criterion has also been proposed. The proposed approach has been compared with commonly used approaches i.e., Maximum Entropy Modeling (MEM), Maximal Dependency Decomposition (MDD), Weighted Matrix Method (WMM) and Markov Model of first order (MM1) and was found to perform equally with MEM and MDD and better than WMM and MM1 in terms of prediction accuracy.ConclusionsThe proposed prediction approach can be used in the prediction of donor splice sites with higher accuracy using short sequence motifs and hence can be used as a complementary method to the existing approaches. Based on the proposed methodology, a web server was also developed for easy prediction of donor splice sites by users and is available at http://cabgrid.res.in:8080/sspred.


Biodata Mining | 2016

Prediction of donor splice sites using random forest with a new sequence encoding approach

Prabina Kumar Meher; Tanmaya Kumar Sahu; A. R. Rao

BackgroundDetection of splice sites plays a key role for predicting the gene structure and thus development of efficient analytical methods for splice site prediction is vital. This paper presents a novel sequence encoding approach based on the adjacent di-nucleotide dependencies in which the donor splice site motifs are encoded into numeric vectors. The encoded vectors are then used as input in Random Forest (RF), Support Vector Machines (SVM) and Artificial Neural Network (ANN), Bagging, Boosting, Logistic regression, kNN and Naïve Bayes classifiers for prediction of donor splice sites.ResultsThe performance of the proposed approach is evaluated on the donor splice site sequence data of Homo sapiens, collected from Homo Sapiens Splice Sites Dataset (HS3D). The results showed that RF outperformed all the considered classifiers. Besides, RF achieved higher prediction accuracy than the existing methods viz., MEM, MDD, WMM, MM1, NNSplice and SpliceView, while compared using an independent test dataset.ConclusionBased on the proposed approach, we have developed an online prediction server (MaLDoSS) to help the biological community in predicting the donor splice sites. The server is made freely available at http://cabgrid.res.in:8080/maldoss. Due to computational feasibility and high prediction accuracy, the proposed approach is believed to help in predicting the eukaryotic gene structure.


PLOS ONE | 2017

Statistical Approaches for Gene Selection, Hub Gene Identification and Module Interaction in Gene Co-Expression Network Analysis: An Application to Aluminum Stress in Soybean (Glycine max L.).

Samarendra Das; Prabina Kumar Meher; Anil Rai; Lal Mohan Bhar; B. N. Mandal

Selection of informative genes is an important problem in gene expression studies. The small sample size and the large number of genes in gene expression data make the selection process complex. Further, the selected informative genes may act as a vital input for gene co-expression network analysis. Moreover, the identification of hub genes and module interactions in gene co-expression networks is yet to be fully explored. This paper presents a statistically sound gene selection technique based on support vector machine algorithm for selecting informative genes from high dimensional gene expression data. Also, an attempt has been made to develop a statistical approach for identification of hub genes in the gene co-expression network. Besides, a differential hub gene analysis approach has also been developed to group the identified hub genes into various groups based on their gene connectivity in a case vs. control study. Based on this proposed approach, an R package, i.e., dhga (https://cran.r-project.org/web/packages/dhga) has been developed. The comparative performance of the proposed gene selection technique as well as hub gene identification approach was evaluated on three different crop microarray datasets. The proposed gene selection technique outperformed most of the existing techniques for selecting robust set of informative genes. Based on the proposed hub gene identification approach, a few number of hub genes were identified as compared to the existing approach, which is in accordance with the principle of scale free property of real networks. In this study, some key genes along with their Arabidopsis orthologs has been reported, which can be used for Aluminum toxic stress response engineering in soybean. The functional analysis of various selected key genes revealed the underlying molecular mechanisms of Aluminum toxic stress response in soybean.


Gene | 2016

Identification of species based on DNA barcode using k-mer feature vector and Random forest classifier.

Prabina Kumar Meher; Tanmaya Kumar Sahu; A. R. Rao

DNA barcoding is a molecular diagnostic method that allows automated and accurate identification of species based on a short and standardized fragment of DNA. To this end, an attempt has been made in this study to develop a computational approach for identifying the species by comparing its barcode with the barcode sequence of known species present in the reference library. Each barcode sequence was first mapped onto a numeric feature vector based on k-mer frequencies and then Random forest methodology was employed on the transformed dataset for species identification. The proposed approach outperformed similarity-based, tree-based, diagnostic-based approaches and found comparable with existing supervised learning based approaches in terms of species identification success rate, while compared using real and simulated datasets. Based on the proposed approach, an online web interface SPIDBAR has also been developed and made freely available at http://cabgrid.res.in:8080/spidbar/ for species identification by the taxonomists.


BMC Bioinformatics | 2017

DIRProt: a computational approach for discriminating insecticide resistant proteins from non-resistant proteins

Prabina Kumar Meher; Tanmaya Kumar Sahu; Anjali Banchariya; A. R. Rao

BackgroundInsecticide resistance is a major challenge for the control program of insect pests in the fields of crop protection, human and animal health etc. Resistance to different insecticides is conferred by the proteins encoded from certain class of genes of the insects. To distinguish the insecticide resistant proteins from non-resistant proteins, no computational tool is available till date. Thus, development of such a computational tool will be helpful in predicting the insecticide resistant proteins, which can be targeted for developing appropriate insecticides.ResultsFive different sets of feature viz., amino acid composition (AAC), di-peptide composition (DPC), pseudo amino acid composition (PAAC), composition-transition-distribution (CTD) and auto-correlation function (ACF) were used to map the protein sequences into numeric feature vectors. The encoded numeric vectors were then used as input in support vector machine (SVM) for classification of insecticide resistant and non-resistant proteins. Higher accuracies were obtained under RBF kernel than that of other kernels. Further, accuracies were observed to be higher for DPC feature set as compared to others. The proposed approach achieved an overall accuracy of >90% in discriminating resistant from non-resistant proteins. Further, the two classes of resistant proteins i.e., detoxification-based and target-based were discriminated from non-resistant proteins with >95% accuracy. Besides, >95% accuracy was also observed for discrimination of proteins involved in detoxification- and target-based resistance mechanisms. The proposed approach not only outperformed Blastp, PSI-Blast and Delta-Blast algorithms, but also achieved >92% accuracy while assessed using an independent dataset of 75 insecticide resistant proteins.ConclusionsThis paper presents the first computational approach for discriminating the insecticide resistant proteins from non-resistant proteins. Based on the proposed approach, an online prediction server DIRProt has also been developed for computational prediction of insecticide resistant proteins, which is accessible at http://cabgrid.res.in:8080/dirprot/. The proposed approach is believed to supplement the efforts needed to develop dynamic insecticides in wet-lab by targeting the insecticide resistant proteins.


Journal of Theoretical Biology | 2016

A computational approach for prediction of donor splice sites with improved accuracy.

Prabina Kumar Meher; Tanmaya Kumar Sahu; A. R. Rao; S. D. Wahi

Identification of splice sites is important due to their key role in predicting the exon-intron structure of protein coding genes. Though several approaches have been developed for the prediction of splice sites, further improvement in the prediction accuracy will help predict gene structure more accurately. This paper presents a computational approach for prediction of donor splice sites with higher accuracy. In this approach, true and false splice sites were first encoded into numeric vectors and then used as input in artificial neural network (ANN), support vector machine (SVM) and random forest (RF) for prediction. ANN and SVM were found to perform equally and better than RF, while tested on HS3D and NN269 datasets. Further, the performance of ANN, SVM and RF were analyzed by using an independent test set of 50 genes and found that the prediction accuracy of ANN was higher than that of SVM and RF. All the predictors achieved higher accuracy while compared with the existing methods like NNsplice, MEM, MDD, WMM, MM1, FSPLICE, GeneID and ASSP, using the independent test set. We have also developed an online prediction server (PreDOSS) available at http://cabgrid.res.in:8080/predoss, for prediction of donor splice sites using the proposed approach.


Journal of Genetics | 2015

Evaluation of random forest regression for prediction of breeding value from genomewide SNPs

Rupam Kumar Sarkar; A. R. Rao; Prabina Kumar Meher; T. Nepolean; T. Mohapatra

Genomic prediction is meant for estimating the breeding value using molecular marker data which has turned out to be a powerful tool for efficient utilization of germplasm resources and rapid improvement of cultivars. Model-based techniques have been widely used for prediction of breeding values of genotypes from genomewide association studies. However, application of the random forest (RF), a model-free ensemble learning method, is not widely used for prediction. In this study, the optimum values of tuning parameters of RF have been identified and applied to predict the breeding value of genotypes based on genomewide single-nucleotide polymorphisms (SNPs), where the number of SNPs (P variables) is much higher than the number of genotypes (n observations) (P > > n). Further, a comparison was made with the model-based genomic prediction methods, namely, least absolute shrinkage and selection operator (LASSO), ridge regression (RR) and elastic net (EN) under P > > n. It was found that the correlations between the predicted and observed trait response were 0.591, 0.539, 0.431 and 0.587 for RF, LASSO, RR and EN, respectively, which implies superiority of the RF over the model-based techniques in genomic prediction. Hence, we suggest that the RF methodology can be used as an alternative to the model-based techniques for the prediction of breeding value at genome level with higher accuracy.


PLOS ONE | 2018

Genome wide association mapping of agro-morphological traits among a diverse collection of finger millet (Eleusine coracana L.) genotypes using SNP markers

Divya Sharma; Apoorv Tiwari; Salej Sood; Gautam Jamra; Narender Singh; Prabina Kumar Meher; Anil Kumar

Finger millet (Eleusine coracana L.) is an important dry-land cereal in Asia and Africa because of its ability to provide assured harvest under extreme dry conditions and excellent nutritional properties. However, the genetic improvement of the crop is lacking in the absence of suitable genomic resources for reliable genotype-phenotype associations. Keeping this in view, a diverse global finger millet germplasm collection of 113 accessions was evaluated for 14 agro-morphological characters in two environments viz. ICAR-Vivekananda Institute of Hill Agriculture, Almora (E1) and Crop Research Centre (CRC), GBPUA&T, Pantnagar (E2), India. Principal component analysis and cluster analysis of phenotypic data separated the Indian and exotic accessions into two separate groups. Previously generated SNPs through genotyping by sequencing (GBS) were used for association mapping to identify reliable marker(s) linked to grain yield and its component traits. The marker trait associations were determined using single locus single trait (SLST), multi-locus mixed model (MLMM) and multi-trait mixed model (MTMM) approaches. SLST led to the identification of 20 marker-trait associations (MTAs) (p value<0.01 and <0.001) for 5 traits. While advanced models, MLMM and MTMM resulted in additional 36 and 53 MTAs, respectively. Nine MTAs were common out of total 109 associations in all the three mapping approaches (SLST, MLMM and MTMM). Among these nine SNPs, five SNP sequences showed homology to candidate genes of Oryza sativa (Rice) and Setaria italica (Foxtail millet), which play an important role in flowering, maturity and grain yield. In addition, 67 and 14 epistatic interactions were identified for 10 and 7 traits at E1 and E2 locations, respectively. Hence, the 109 novel SNPs associated with important agro-morphological traits, reported for the first time in this study could be precisely utilized in finger millet genetic improvement after validation.

Collaboration


Dive into the Prabina Kumar Meher's collaboration.

Top Co-Authors

Avatar

A. R. Rao

Indian Agricultural Statistics Research Institute

View shared research outputs
Top Co-Authors

Avatar

Tanmaya Kumar Sahu

Indian Agricultural Statistics Research Institute

View shared research outputs
Top Co-Authors

Avatar

S. D. Wahi

Indian Agricultural Statistics Research Institute

View shared research outputs
Top Co-Authors

Avatar

Anil Rai

Indian Agricultural Statistics Research Institute

View shared research outputs
Top Co-Authors

Avatar

Rupam Kumar Sarkar

Indian Agricultural Statistics Research Institute

View shared research outputs
Top Co-Authors

Avatar

Samarendra Das

Indian Agricultural Statistics Research Institute

View shared research outputs
Top Co-Authors

Avatar

Shachi Gahoi

Indian Agricultural Statistics Research Institute

View shared research outputs
Top Co-Authors

Avatar

T. Mohapatra

Indian Council of Agricultural Research

View shared research outputs
Top Co-Authors

Avatar

Anil Kumar

G. B. Pant University of Agriculture and Technology

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge