Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Pradeep Kumar Das Mohapatra is active.

Publication


Featured researches published by Pradeep Kumar Das Mohapatra.


Journal of Biomedical Materials Research Part A | 2012

Collagen scaffolds derived from fresh water fish origin and their biocompatibility

Falguni Pati; Pallab Datta; Basudam Adhikari; Santanu Dhara; Kuntal Ghosh; Pradeep Kumar Das Mohapatra

Collagen, a major component of native extracellular matrix, has diverse biomedical applications. However, its application is limited due to lack of cost-effective production and risk of disease transmission from bovine sources currently utilized. This study describes fabrication and characterization of nano/micro fibrous scaffolds utilizing collagen extracted from fresh water fish origin. This is the first time collagen extracted from fresh water fish origin was studied for their biocompatibility and immunogenicity. The nano/micro fibrous collagen scaffolds were fabricated through self-assembly owing to its amphiphilic nature and were subsequently cross-linked. In vitro degradation study revealed higher stability of the cross-linked scaffolds with only ~50% reduction of mass in 30 days, while the uncross-linked one degraded completely in 4 days. Further, minimal inflammatory response was observed when collagen solution was injected in mice with or without adjuvant, without significant dilution of sera. The fish collagen scaffolds exhibited considerable cell viability and were comparable with that of bovine collagen. SEM and fluorescence microscopic analysis revealed significant proliferation rate of cells on the scaffolds and within 5 days the cells were fully confluent. These findings indicated that fish collagen scaffolds derived from fresh water origin were highly biocompatible in nature.


Bioresource Technology | 2013

Production of cellulolytic enzymes by Aspergillus fumigatus ABK9 in wheat bran-rice straw mixed substrate and use of cocktail enzymes for deinking of waste office paper pulp.

Arpan Das; Tanmay Paul; Suman Kumar Halder; Arijit Jana; Chiranjit Maity; Pradeep Kumar Das Mohapatra; Bikas R. Pati; Keshab Chandra Mondal

Response surface methodology was employed to optimize mixed substrate solid state fermentation for the production of cellulases and xylanase by Aspergillus fumigatus ABK9. Among 11 different parameters, fermentation time (86-88 h), medium pH (6.1-6.2), substrate amount (10.0-10.5 g) and substrate ratio (wheat bran:rice straw) (1.1) had significantly influences on enzyme production. Under these conditions endoglucanase, β-glucosidase, FPase (filter paper degrading activity) and xylanase activities of 826.2, 255.16, 102.5 and 1130.4 U/g, respectively were obtained. The enzyme cocktail extracted (solid to water ratio of 1:10) from the ferments increased brightness of waste office paper pulp by 82.8% ISO, Ink(D) value by 82.1%, removed chromophores (2.53 OD; A(237)nm) and hydrophobic compounds (1.15 OD; A(465)nm) and also decreased the kappa number to 13.5 from 16.8.


Journal of Applied Microbiology | 2007

Production of tannase by the immobilized cells of Bacillus licheniformis KBR6 in Ca-alginate beads

Pradeep Kumar Das Mohapatra; Keshab Chandra Mondal; Bikash Ranjan Pati

Aims:  The present study was aimed at finding the optimal conditions for immobilization of Bacillus licheniformis KBR6 cells in calcium‐alginate (Ca‐alginate) beads and determining the operational stability during the production of tannin‐acyl‐hydrolase (tannase) under semicontinous cultivation.


Brazilian Journal of Microbiology | 2006

Production of cellulase-free xylanase by Trichoderma reesei SAF3

Sanjay Kar; Asish Mandal; Pradeep Kumar Das Mohapatra; Keshab Chandra Mondal; Bikash Ranjan Pati

A xylanase producing fungi has been isolated from soil and identified as Trichoderma reesei SAF3. Maximum growth of the organism was found at 48 h under submerged condition in xylan containing enriched medium, whereas highest enzyme production (4.75U/mL) was recorded at 72 h. No detectable cellulase activity was noted during whole cultivation period. The partially purified enzyme hydrolyzed xylan into xylopentose and xylose. All these properties of xylanase highlighten its promising uses in industrial scale.


Bioresource Technology | 2014

Biosynthesis, structural architecture and biotechnological potential of bacterial tannase: A molecular advancement

Arijit Jana; Suman Kumar Halder; Amrita Banerjee; Tanmay Paul; Bikash Ranjan Pati; Keshab Chandra Mondal; Pradeep Kumar Das Mohapatra

Tannin-rich materials are abundantly generated as wastes from several agroindustrial activities. Therefore, tannase is an interesting hydrolase, for bioconversion of tannin-rich materials into value added products by catalyzing the hydrolysis of ester and depside bonds and unlocked a new prospect in different industrial sectors like food, beverages, pharmaceuticals, etc. Microorganisms, particularly bacteria are one of the major sources of tannase. In the last decade, cloning and heterologous expression of novel tannase genes and structural study has gained momentum. In this article, we have emphasized critically on bacterial tannase that have gained worldwide research interest for their diverse properties. The present paper delineate the developments that have taken place in understanding the role of tannase action, microbial sources, various cultivation aspects, downstream processing, salient biochemical properties, structure and active sites, immobilization, efforts in cloning and overexpression and with special emphasis on recent molecular and biotechnological achievements.


Food Chemistry | 2015

Microbial, saccharifying and antioxidant properties of an Indian rice based fermented beverage.

Kuntal Ghosh; Mousumi Ray; Prabuddha Dey; Suman Kumar Halder; Arpan Das; Arijit Jana; Saswati Parua; Pradeep Kumar Das Mohapatra; Bikas R. Pati; Keshab Chandra Mondal

Haria, a popular rice based ethnic fermented beverage, is consumed as a staple food and refreshing drink by the vast number of Indian tribal people. In this study, the composition of microbial consortia and the occurrence of some important nutraceuticals during haria preparation were investigated. The quantities of moulds and yeasts were highest at 2nd day, and then declined, but, on the contrary, the quantity of Lactic Acid Bacteria and Bifidobacterium sp. increased concurrently during the course of fermentation. Accumulation of starch hydrolytic enzymes along with different types of malto-oligosaccharides like maltotetrose (26.18μg/gm), maltotriose (28.16μg/gm), and maltose (26.94μg/gm) were also noted. Furthermore, GC-MS analysis indicated the occurrence of pyranose derivatives in the fermented products. The fermented materials showed higher free radicals scavenging activity (82.54%, 4th day) against DPPH radicals. These studies clearly demonstrated that the microbial interaction during fermentation of rice makes it more nutritious, and most likely more beneficial for health.


Journal of Hazardous Materials | 2014

Contribution of hot spring bacterial consortium in cadmium and lead bioremediation through quadratic programming model

Sudip Kumar Sen; Sangeeta Raut; Tapas Kumar Dora; Pradeep Kumar Das Mohapatra

In the present investigation, a number of experiments have been conducted to isolate microbial strains from Taptapani Hot Spring Odisha, India for bioremediation of cadmium and lead. The strains Stenotrophomonas maltophilia (SS1), Aeromonas veronii (SS2) and Bacillus barbaricus (SS3) have shown better adaptation to metal tolerance test, with different concentrations of cadmium and lead and hence have been selected for further studies of metal microbial interaction and optimization. The results of bioremediation process indicate that consortium of thermophilic isolates adsorbed heavy metals more effectively than the individually treated isolates. Therefore, A 24 full factorial central composite design has been employed to analyze the effect of metal ion concentration, microbial concentration and time on removal of heavy metals with consortium. Analysis of variance (ANOVA) shows a high coefficient of determination value. The kinetic data have been fitted to pseudo-first order and second-order models. The isotherm equilibrium data have been well fitted by the Langmuir and Freundlich models. The optimum removal conditions determined for initial ion concentration was 0.3g/l; contact time 72h; microbial concentration, 3ml/l; and pH 7. At optimum adsorption conditions, the adsorption of cadmium and lead are found to be 92% and 93%, respectively, and presence of metals was confirmed through EDS analysis.


Bioresource Technology | 2015

Role of probiotic Lactobacillus fermentum KKL1 in the preparation of a rice based fermented beverage

Kuntal Ghosh; Mousumi Ray; Suman Kumar Halder; Arpan Das; Arijit Jana; Saswati Parua; Csaba Vágvölgyi; Pradeep Kumar Das Mohapatra; Bikas R. Pati; Keshab Chandra Mondal

A dominant lactic acid bacteria, Lactobacillus fermentum KKL1 was isolated from an Indian rice based fermented beverage and its fermentative behavior on rice was evaluated. The isolate grown well in rice and decreased the pH, with an increase of total titratable acidity on account of high yield in lactic acid and acetic acid. The production of α-amylase and glucoamylase by the strain reached plateau on 1st and 2nd day of fermentation respectively. The accumulation of malto-oligosaccharides of different degrees of polymerization was also found highest on 4th day. Besides, phytase activity along with accumulation of free minerals also unremittingly increased throughout the fermentation. The fermented materials showed free radical scavenging activity against DPPH radicals. In-vitro characteristics revealed the suitability of the isolate as probiotic organism. The above profiling revealed that probiotic L. fermentum KKL1 have the significant impact in preparation of rice beer and improves its functional characteristics.


Brazilian Journal of Microbiology | 2012

Study on Thermodynamics and Adsorption kinetics of Purified endoglucanase (CMCase) from Penicillium notatum NCIM NO-923 produced under mixed solid-state fermentation of waste cabbage and Bagasse

Arpan Das; Uma Ghosh; Pradeep Kumar Das Mohapatra; Bikas R. Pati; Keshab Chandra Mondal

In the current study, one thermostable endoglucanase was purified from Penicillium notatum NCIM NO-923 through mixed solid state fermentation of waste cabbage and bagasse. The molecular weight of the purified enzyme was 55kDa as determined by SDS polyacrylamide gel electrophoresis (SDS-PAGE). The enzyme had low activation energy (Ea) of 36.39KJ mol(-1) for carboxymethyl cellulose hydrolysis and the enthalpy and entropy for irreversible inactivation was 87 kJ mol (-1) and 59.3 J mol (-1) K(-1) respectively. The enzyme was quite thermostable with a Tm value of 62.2°C. The pKa1 and pKa2 of ionizable groups of the active sites were 2.5 and 5.3 respectively. Apparent Km, Vmax and Kcat of the enzyme were found to be 5.2 mg mL(-1), 80 U/gds and 322.4 sec(-1) respectively. The enzyme showed about 1.4 fold increased activity in presence of 10mM MgSO4. Adsorption of endoglucanase on Avicel at wide pH range was studied at different temperatures. Langmuir type adsorption isotherm at 10°C showed maximum adsorption strength of enzyme at pH 3.0, which was in a range of optimum pH of the enzyme.


Applied Biochemistry and Biotechnology | 2012

Tannase Production by Penicillium purpurogenum PAF6 in Solid State Fermentation of Tannin-Rich Plant Residues Following OVAT and RSM

Arijit Jana; Chiranjit Maity; Suman Kumar Halder; Keshab Chandra Mondal; Bikash Ranjan Pati; Pradeep Kumar Das Mohapatra

Tannase production by newly isolated Penicillium purpurogenum PAF6 was investigated by ‘one variable at a time’ (OVAT) approach followed by response surface methodology (RSM). Tannin-rich plant residues were used as supporting solid substrate and sole carbon source and, among them, tamarind seed was found to be the most favorable substrate than haritaki, pomegranate, tea leaf waste and arjun fruit. Physicochemical parameters were initially optimized using OVAT methodology and some important factors like incubation time, incubation temperature, substrate:moisture ratio as well as carbon, nitrogen and phosphate concentrations were verified with Box–Behken design of response surface methodology. Phosphate source, nitrogen source and temperature were found as the most favorable variables in the maximization of production. Tannase production was enhanced from 1.536 U/g to 5.784 U/g using tamarind seed OVAT optimization and further enhancement up to 6.15 U/g following RSM. An overall 3.76- and 4.0-fold increases in tannase production were achieved in OVAT and RSM, respectively.

Collaboration


Dive into the Pradeep Kumar Das Mohapatra's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Arpan Das

Vidyasagar University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge