Pradip Chakraborty
University of Geneva
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Pradip Chakraborty.
Angewandte Chemie | 2014
Andrea Marino; Pradip Chakraborty; Marina Servol; Maciej Lorenc; Eric Collet; Andreas Hauser
Light-induced excited spin-state trapping (LIESST) in iron(II) spin-crossover compounds, that is, the light-induced population of the high-spin (S=2) state below the thermal transition temperature, was discovered thirty years ago. For irradiation into metal-ligand charge transfer (MLCT) bands of the low-spin (S=0) species the acknowledged sequence takes the system from the initially excited (1) MLCT to the high-spin state via the (3) MLCT state within ca. 150 fs, thereby bypassing low-lying ligand-field (LF) states. Nevertheless, these play a role, as borne out by the observation of LIESST and reverse-LIESST on irradiation directly into the LF bands for systems with only high-energy MLCT states. Herein we elucidate the ultrafast reverse-LIESST pathway by identifying the lowest energy S=1 LF state as an intermediate state with a lifetime of 39 ps for the light-induced high-spin to low-spin conversion on irradiation into the spin-allowed LF transition of the high-spin species in the NIR.
Inorganic Chemistry | 2012
Pradip Chakraborty; Cristian Enachescu; Christophe Walder; Robert Bronisz; Andreas Hauser
The thermal spin transition, the photoexcitation, and the subsequent spin relaxation in the mixed crystal series of the covalently linked two-dimensional network {[Zn(1-x)Fe(x)(bbtr)(3)](ClO(4))(2)}(∞) (x = 0.02-1, bbtr =1,4-di(1,2,3-triazol-1-yl)-butane) are discussed. In the neat compound, the thermal spin transition with a hysteresis of 13 K is accompanied by a crystallographic phase transition (Kusz, J.; Bronisz, R.; Zubko, M.; Bednarek, H. Chem. Eur. J.2011, 17, 6807). In contrast, the diluted crystals with x ≤ 0.1 stay essentially in the high-spin state down to low temperatures and show typical first order relaxation kinetics upon photoexcitation, and the structural phase transition is well separated from the spin transition. With increasing Fe(II) concentration, steeper thermal transitions and sigmoidal relaxation curves indicate increasingly important cooperative effects. Already at x = 0.38, the spin relaxation is governed by cooperative interactions between Fe(II) centers, and the crystallographic phase transition begins to influence the spin transition. The kinetic behavior of the thermal spin transition is reproduced within the framework of a dynamic mean-field model.
Journal of the American Chemical Society | 2012
Pradip Chakraborty; Robert Bronisz; Céline Besnard; Laure Guénée; Phil Pattison; Andreas Hauser
In the covalently linked 2D coordination network {[Fe(bbtr)(3)](BF(4))(2)}(∞), bbtr = 1,4-di(1,2,3-triazol-1-yl)butane, the iron(II) centers stay in the high-spin (HS) state down to 10 K. They can, however, be quantitatively converted to the low-spin (LS) state by irradiating into the near-IR spin allowed (5)dd band and back again by irradiating into the visible (1)dd band. The compound shows true light-induced bistability below 100 K, thus, having the potential for persistent bidirectional optical switching at elevated temperatures.
ACS Nano | 2016
Charles J. Barrows; Pradip Chakraborty; Lindsey M. Kornowske; Daniel R. Gamelin
The physical properties of semiconductor nanocrystals can be tuned dramatically via composition control. Here, we report a detailed investigation of the synthesis of high-quality colloidal Cd1-xMnxSe nanocrystals by diffusion doping of preformed CdSe nanocrystals. Until recently, Cd1-xMnxSe nanocrystals proved elusive because of kinetic incompatibilities between Mn(2+) and Cd(2+) chemistries. Diffusion doping allows Cd1-xMnxSe nanocrystals to be prepared under thermodynamic rather than kinetic control, allowing access to broader composition ranges. We now investigate this chemistry as a model system for understanding the characteristics of nanocrystal diffusion doping more deeply. From the present work, a Se(2-)-limited reaction regime is identified, in which Mn(2+) diffusion into CdSe nanocrystals is gated by added Se(2-), and equilibrium compositions are proportional to the amount of added Se(2-). At large added Se(2-) concentrations, a solubility-limited regime is also identified, in which x = xmax = ∼0.31, independent of the amount of added Se(2-). We further demonstrate that Mn(2+) in-diffusion can be reversed by cation exchange with Cd(2+) under exactly the same reaction conditions, purifying Cd1-xMnxSe nanocrystals back to CdSe nanocrystals with fine tunability. These chemistries offer exceptional composition control in Cd1-xMnxSe NCs, providing opportunities for fundamental studies of impurity diffusion in nanocrystals and for development of compositionally tuned nanocrystals with diverse applications ranging from solar energy conversion to spin-based photonics.
Angewandte Chemie | 2013
Pradip Chakraborty; Marie-Laure Boillot; Antoine Tissot; Andreas Hauser
A switch in time: A fast precipitation technique was used to prepare 75 nm FeII spin-crossover nanocrystals. Their photoswitching dynamics, based on the light-induced excited spin-state trapping effect, has been investigated by means of optical spectroscopy. A significant variation of the switching proprieties is observed compared to similar but amorphous nanoparticles.
Inorganic Chemistry | 2011
Itana Krivokapic; Pradip Chakraborty; Cristian Enachescu; Robert Bronisz; Andreas Hauser
Whereas the neat polymeric iron(II) compound [Fe(bbtr)(3)](ClO(4))(2), bbtr = 1,4-di(1,2,3-triazol-1-yl)butane, shows a quantitative spin transition triggered by a crystallographic phase transition centered at 107 K with a 13 K wide hysteresis, the iron(II) complexes in the diluted mixed crystals [Fe(x)Zn(1-x)(bbtr)(3)](ClO(4))(2), x = 0.02 and 0.1, stay predominantly in the (5)T(2) high-spin state down to cryogenic temperatures. However, the (1)A(1) low-spin state can be populated as metastable state via irradiation into the spin-allowed (5)T(2)→(5)E ligand-field transition of the high-spin species in the near-infrared. The quantum efficiency of the light-induced conversion is approximately 10% at low temperatures and decreases rapidly above 160 K. The lifetime of the light-induced low-spin state decreases from 15 days at 40 K to 30 ns at 220 K, that is, by 14 orders of magnitude. In the high-temperature regime the activation energy for the low-spin→high-spin relaxation is 1840(20) cm(-1).
Chemistry: A European Journal | 2013
Pradip Chakraborty; Sébastien Pillet; El-Eulmi Bendeif; Cristian Enachescu; Robert Bronisz; Andreas Hauser
Whereas the neat polymeric Fe(II) compound {[Fe(bbtr)3 ][ClO4 ]2 }∞ (bbtr=1,4-di(1,2,3-triazol-1-yl)butane) shows an abrupt spin transition centered at 107 K facilitated by a crystallographic symmetry breaking, in the covalently linked 2D coordination network of {[Fe(bbtr)3 ][BF4 ]2 }∞ , Fe(II) stays in the high-spin state down to 10 K. However, strong cooperative effects of elastic origin result in reversible, persistent, and wavelength-selective photoswitching between the low-spin and high-spin manifolds. This compound thus shows true light-induced bistability below 100 K. The persistent bidirectional optical switching behavior is discussed as a function of temperature, irradiation time, and intensity. Crystallographic studies reveal a photoinduced symmetry breaking and serve to establish the correlation between structure and cooperative effects. The static and kinetic behavior is explicated within the framework of the mean-field approximation.
Angewandte Chemie | 2010
Itana Krivokapic; Pradip Chakraborty; Robert Bronisz; Cristian Enachescu; Andreas Hauser
In the dilute mixed-crystal system [Zn1−xFex(bbtr)3](ClO4)2, x=2 % (bbtr=1,4-di(1,2,3-triazol-1-yl)butane), the iron(II) centers are predominantly in the high-spin state. The low-spin state can be populated as a metastable state by irradiation with near-IR light; the rate constant of the low-spin→high-spin relaxation spans 14 orders of magnitude between 40 and 220 K
Journal of Applied Physics | 2015
Laurentiu Stoleriu; Alexandru Stancu; Pradip Chakraborty; Andreas Hauser; Cristian Enachescu
The recently obtained spin-crossover nanoparticles are possible candidates for applications in the recording media industry as materials for data storage, or as pressure and temperature sensors. For these applications, the intermolecular interactions and interactions between spin-crossover nanoparticles are extremely important, as they may be essential factors in triggering the transition between the two stable phases: the high-spin and low-spin ones. In order to find correlations between the distributions in size and interactions and the transition temperatures distribution, we apply the FORC (First Order Reversal Curves) method, using simulations based on a mechanoelastic model applied to 2D triangular lattices composed of molecules linked by springs and embedded in a surfactant. We consider two Gaussian distributions: one is the size of the nanoparticles and another is the elastic interactions between edge spin-crossover molecules and the surfactant molecules. In order to disentangle the kinetic and non-kinetic parts of the FORC distributions, we compare the results obtained for different temperature sweeping rates. We also show that the presence of few larger particles in a distribution centered around much smaller particles dramatically increases the hysteresis width.
Physical Review B | 2011
Laurentiu Stoleriu; Pradip Chakraborty; Andreas Hauser; Alexandru Stancu; Cristian Enachescu