Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Pradipta Ghosh is active.

Publication


Featured researches published by Pradipta Ghosh.


Nature Reviews Molecular Cell Biology | 2003

Mannose 6-phosphate receptors: new twists in the tale

Pradipta Ghosh; Nancy M. Dahms; Stuart Kornfeld

The two mannose 6-phosphate (M6P) receptors were identified because of their ability to bind M6P-containing soluble acid hydrolases in the Golgi and transport them to the endosomal–lysosomal system. During the past decade, we have started to understand the structural features of these receptors that allow them to do this job, and how the receptors themselves are sorted as they pass through various membrane-bound compartments. But trafficking of acid hydrolases is only part of the story. Evidence is emerging that one of the receptors can regulate cell growth and motility, and that it functions as a tumour suppressor.


Nature | 2011

Sequential interactions with Sec23 control the direction of vesicle traffic

Christopher J. Lord; Deepali Bhandari; Shekar Menon; Majid Ghassemian; Deborah C. Nycz; Jesse C. Hay; Pradipta Ghosh; Susan Ferro-Novick

How the directionality of vesicle traffic is achieved remains an important unanswered question in cell biology. The Sec23p/Sec24p coat complex sorts the fusion machinery (SNAREs) into vesicles as they bud from the endoplasmic reticulum (ER). Vesicle tethering to the Golgi begins when the tethering factor TRAPPI binds to Sec23p. Where the coat is released and how this event relates to membrane fusion is unknown. Here we use a yeast transport assay to demonstrate that an ER-derived vesicle retains its coat until it reaches the Golgi. A Golgi-associated kinase, Hrr25p (CK1δ orthologue), then phosphorylates the Sec23p/Sec24p complex. Coat phosphorylation and dephosphorylation are needed for vesicle fusion and budding, respectively. Additionally, we show that Sec23p interacts in a sequential manner with different binding partners, including TRAPPI and Hrr25p, to ensure the directionality of ER–Golgi traffic and prevent the back-fusion of a COPII vesicle with the ER. These events are conserved in mammalian cells.


Proceedings of the National Academy of Sciences of the United States of America | 2009

GIV is a nonreceptor GEF for Gαi with a unique motif that regulates Akt signaling

Mikel Garcia-Marcos; Pradipta Ghosh; Marilyn G. Farquhar

Heterotrimeric G proteins are molecular switches that control signal transduction. Ligand-occupied, G protein-coupled receptors serve as the canonical guanine nucleotide exchange factors (GEFs) that activate heterotrimeric G proteins. A few unrelated nonreceptor GEFs have also been described, but little or nothing is known about their structure, mechanism of action, or cellular functions in mammals. We have discovered that GIV/Girdin serves as a nonreceptor GEF for Gαi through an evolutionarily conserved motif that shares sequence homology with the synthetic GEF peptide KB-752. Using the available structure of the KB-752·Gαi1 complex as a template, we modeled the Gαi-GIV interface and identified the key residues that are required to form it. Mutation of these key residues disrupts the interaction and impairs Akt enhancement, actin remodeling, and cell migration in cancer cells. Mechanistically, we demonstrate that the GEF motif is capable of activating as well as sequestering the Gα-subunit, thereby enhancing Akt signaling via the Gβγ-PI3K pathway. Recently, GIV has been implicated in cancer metastasis by virtue of its ability to enhance Akt activity and remodel the actin cytoskeleton during cancer invasion. Thus, the novel regulatory motif described here provides the structural and biochemical basis for the prometastatic features of GIV, making the functional disruption of this unique Gαi-GIV interface a promising target for therapy against cancer metastasis.


Journal of Cell Biology | 2008

Activation of Gαi3 triggers cell migration via regulation of GIV

Pradipta Ghosh; Mikel Garcia-Marcos; Scott J. Bornheimer; Marilyn G. Farquhar

During migration, cells must couple direction sensing to signal transduction and actin remodeling. We previously identified GIV/Girdin as a Gαi3 binding partner. We demonstrate that in mammalian cells Gαi3 controls the functions of GIV during cell migration. We find that Gαi3 preferentially localizes to the leading edge and that cells lacking Gαi3 fail to polarize or migrate. A conformational change induced by association of GIV with Gαi3 promotes Akt-mediated phosphorylation of GIV, resulting in its redistribution to the plasma membrane. Activation of Gαi3 serves as a molecular switch that triggers dissociation of Gβγ and GIV from the Gi3–GIV complex, thereby promoting cell migration by enhancing Akt signaling and actin remodeling. Gαi3–GIV coupling is essential for cell migration during wound healing, macrophage chemotaxis, and tumor cell migration, indicating that the Gαi3–GIV switch serves to link direction sensing from different families of chemotactic receptors to formation of the leading edge during cell migration.


Molecular Biology of the Cell | 2010

A Gαi-GIV molecular complex binds epidermal growth factor receptor and determines whether cells migrate or proliferate

Pradipta Ghosh; Anthony Beas; Scott J. Bornheimer; Mikel Garcia-Marcos; Erin P. Forry; Carola Johannson; Jason Ear; Barbara Jung; Betty L. Cabrera; John M. Carethers; Marilyn G. Farquhar

Migrating cells do not proliferate and vice versa, but the mechanism involved remains unknown. Ghosh et al. reveal how this cellular decision is made by showing that a Gαi–GIV molecular complex interacts with EGF receptor and programs growth factor signaling, triggering migration when assembled and favoring mitosis when assembly is prevented.


Journal of Cell Biology | 2003

AP-1 binding to sorting signals and release from clathrin-coated vesicles is regulated by phosphorylation

Pradipta Ghosh; Stuart Kornfeld

The adaptor protein complex-1 (AP-1) sorts and packages membrane proteins into clathrin-coated vesicles (CCVs) at the TGN and endosomes. Here we show that this process is highly regulated by phosphorylation of AP-1 subunits. Cell fractionation studies revealed that membrane-associated AP-1 differs from cytosolic AP-1 in the phosphorylation status of its β1 and μ1 subunits. AP-1 recruitment onto the membrane is associated with protein phosphatase 2A (PP2A)–mediated dephosphorylation of its β1 subunit, which enables clathrin assembly. This Golgi-associated isoform of PP2A exhibits specificity for phosphorylated β1 compared with phosphorylated μ1. Once on the membrane, the μ1 subunit undergoes phosphorylation, which results in a conformation change, as revealed by increased sensitivity to trypsin. This conformational change is associated with increased binding to sorting signals on the cytoplasmic tails of cargo molecules. Dephosphorylation of μ1 (and μ2) by another PP2A-like phosphatase reversed the effect and resulted in adaptor release from CCVs. Immunodepletion and okadaic acid inhibition studies demonstrate that PP2A is the cytosolic cofactor for Hsc-70–mediated adaptor uncoating. A model is proposed where cyclical phosphorylation/dephosphorylation of the subunits of AP-1 regulate its function from membrane recruitment until its release into cytosol.


Journal of Cell Biology | 2003

Mammalian GGAs act together to sort mannose 6-phosphate receptors

Pradipta Ghosh; Janice Griffith; Hans J. Geuze; Stuart Kornfeld

The GGAs (Golgi-localized, γ ear–containing, ADP ribosylation factor–binding proteins) are multidomain proteins implicated in protein trafficking between the Golgi and endosomes. We examined whether the three mammalian GGAs act independently or together to mediate their functions. Using cryo-immunogold electron microscopy, the three GGAs were shown to colocalize within coated buds and vesicles at the trans-Golgi network (TGN) of HeLa cells. In vitro binding experiments revealed multidomain interactions between the GGAs, and chemical cross-linking experiments demonstrated that GGAs 1 and 2 form a complex on Golgi membranes. RNA interference of each GGA resulted in decreased levels of the other GGAs and their redistribution from the TGN to cytosol. This was associated with impaired incorporation of the cation-independent mannose 6-phosphate receptor into clathrin-coated vesicles at the TGN, partial redistribution of the receptor to endosomes, and missorting of cathepsin D. The morphology of the TGN was also altered. These findings indicate that the three mammalian GGAs cooperate to sort cargo and are required for maintenance of TGN structure.


Proceedings of the National Academy of Sciences of the United States of America | 2002

Autoinhibition of the ligand-binding site of GGA1/3 VHS domains by an internal acidic cluster-dileucine motif.

Balraj Doray; Kerry Bruns; Pradipta Ghosh; Stuart Kornfeld

The GGAs (Golgi-localizing, γ-adaptin ear homology domain, ARF-binding proteins) are a family of proteins implicated in protein trafficking from the Golgi to endosomes/lysosomes. These proteins have modular structures with an N-terminal VHS (VPS-27, Hrs, and STAM) domain followed by a GAT (GGA and TOM1) domain, a connecting hinge segment, and a C-terminal GAE (γ-adaptin ear) domain. Isolated VHS domains have been shown to bind specifically to acidic cluster (AC)-dileucine motifs present in the cytoplasmic tails of the mannose 6-phosphate receptors. Here we report that full-length cytoplasmic GGA1 and GGA3 but not GGA2 bind the cation-independent mannose 6-phosphate receptor very poorly because of autoinhibition. This inhibition is caused by the binding of an AC-LL sequence present in the hinge segment to the ligand-binding site in the VHS domain. The inhibition depends on the phosphorylation of a serine located three residues upstream of the AC-LL motif. The serine is phosphorylated by casein kinase 2 in in vitro assays. Substitution of the GGA1 inhibitory sequence into the analogous location in GGA2, which lacks the AC-LL motif, results in autoinhibition of the latter protein. These data indicate that the activity of GGA1 and GGA3 is regulated by cycles of phosphorylation/dephosphorylation.


European Journal of Cell Biology | 2004

The GGA proteins: key players in protein sorting at the trans-Golgi network

Pradipta Ghosh; Stuart Kornfeld

The GGA (Golgi-localized, gamma-ear containing, ADP-ribosylation factor binding) family of multidomain coat proteins was first described in the year 2000. They are now known to occupy a central position in the trafficking of the mannose 6-phosphate receptors and other cargo molecules from the trans-Golgi network to the endosome/lysosome system. This review covers the recent structural and cell biological studies that have provided mechanistic insights into the function of the GGAs in mannose 6-phosphate receptor trafficking.


Molecular Biology of the Cell | 2011

A GDI (AGS3) and a GEF (GIV) regulate autophagy by balancing G protein activity and growth factor signals.

Mikel Garcia-Marcos; Jason Ear; Marilyn G. Farquhar; Pradipta Ghosh

This work introduces a nonreceptor GEF for Gαi subunits as a regulator of autophagy. The authors reveal how growth factors reversibly regulate autophagy by a unique mechanism that involves reversible regulation of Gαi3 activity by AGS3, a GDI, and GIV, a GEF, during initiation and reversal of autophagy, respectively.

Collaboration


Dive into the Pradipta Ghosh's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Nicolas Aznar

University of California

View shared research outputs
Top Co-Authors

Avatar

Jason Ear

University of California

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Ying Dunkel

University of California

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Stuart Kornfeld

Washington University in St. Louis

View shared research outputs
Top Co-Authors

Avatar

Yash Mittal

University of California

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge