Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Pramod Dhakal is active.

Publication


Featured researches published by Pramod Dhakal.


Endocrinology | 2014

Generation of Esr1-knockout rats using zinc finger nuclease-mediated genome editing.

M.A. Karim Rumi; Pramod Dhakal; Kaiyu Kubota; Damayanti Chakraborty; Tianhua Lei; Melissa Larson; Michael W. Wolfe; Katherine F. Roby; Jay L. Vivian; Michael J. Soares

Estrogens play pivotal roles in development and function of many organ systems, including the reproductive system. We have generated estrogen receptor 1 (Esr1)-knockout rats using zinc finger nuclease (ZFN) genome targeting. mRNAs encoding ZFNs targeted to exon 3 of Esr1 were microinjected into single-cell rat embryos and transferred to pseudopregnant recipients. Of 17 live births, 5 had biallelic and 1 had monoallelic Esr1 mutations. A founder with monoallelic mutations was backcrossed to a wild-type rat. Offspring possessed only wild-type Esr1 alleles or wild-type alleles and Esr1 alleles containing either 482 bp (Δ482) or 223 bp (Δ223) deletions, indicating mosaicism in the founder. These heterozygous mutants were bred for colony expansion, generation of homozygous mutants, and phenotypic characterization. The Δ482 Esr1 allele yielded altered transcript processing, including the absence of exon 3, aberrant splicing of exon 2 and 4, and a frameshift that generated premature stop codons located immediately after the codon for Thr157. ESR1 protein was not detected in homozygous Δ482 mutant uteri. ESR1 disruption affected sexually dimorphic postnatal growth patterns and serum levels of gonadotropins and sex steroid hormones. Both male and female Esr1-null rats were infertile. Esr1-null males had small testes with distended and dysplastic seminiferous tubules, whereas Esr1-null females possessed large polycystic ovaries, thread-like uteri, and poorly developed mammary glands. In addition, uteri of Esr1-null rats did not effectively respond to 17β-estradiol treatment, further demonstrating that the Δ482 Esr1 mutation created a null allele. This rat model provides a new experimental tool for investigating the pathophysiology of estrogen action.


Proceedings of the National Academy of Sciences of the United States of America | 2016

HIF-KDM3A-MMP12 regulatory circuit ensures trophoblast plasticity and placental adaptations to hypoxia

Damayanti Chakraborty; Wei Cui; Gracy X. Rosario; Regan L. Scott; Pramod Dhakal; Stephen J. Renaud; Makoto Tachibana; M.A. Karim Rumi; Clifford W. Mason; Adam J. Krieg; Michael J. Soares

Significance The hemochorial placenta is a dynamic structure endowed with responsibilities controlling the extraction of maternal resources, ensuring fetal development and preserving maternal health. A healthy placenta exhibits plasticity and can adapt to environmental challenges. Such adaptations can be executed through instructive actions on trophoblast stem cells, influencing their abilities to expand and differentiate into specialized cells that accommodate the challenge. Hypoxia, when appropriately timed, promotes invasive trophoblast-directed uterine spiral artery remodeling. Hypoxia activates hypoxia inducible factor-dependent expression of lysine demethylase 3A, modifying the histone landscape on key target genes, including matrix metallopeptidase 12, which acts to facilitate trophoblast invasion and uterine vascular remodeling. Plasticity and adaptations at the maternal–fetal interface safeguard placental development and the healthy progression of pregnancy. The hemochorial placenta develops from the coordinated multilineage differentiation of trophoblast stem (TS) cells. An invasive trophoblast cell lineage remodels uterine spiral arteries, facilitating nutrient flow, failure of which is associated with pathological conditions such as preeclampsia, intrauterine growth restriction, and preterm birth. Hypoxia plays an instructive role in influencing trophoblast cell differentiation and regulating placental organization. Key downstream hypoxia-activated events were delineated using rat TS cells and tested in vivo, using trophoblast-specific lentiviral gene delivery and genome editing. DNA microarray analyses performed on rat TS cells exposed to ambient or low oxygen and pregnant rats exposed to ambient or hypoxic conditions showed up-regulation of genes characteristic of an invasive/vascular remodeling/inflammatory phenotype. Among the shared up-regulated genes was matrix metallopeptidase 12 (MMP12). To explore the functional importance of MMP12 in trophoblast cell-directed spiral artery remodeling, we generated an Mmp12 mutant rat model using transcription activator-like nucleases-mediated genome editing. Homozygous mutant placentation sites showed decreased hypoxia-dependent endovascular trophoblast invasion and impaired trophoblast-directed spiral artery remodeling. A link was established between hypoxia/HIF and MMP12; however, evidence did not support Mmp12 as a direct target of HIF action. Lysine demethylase 3A (KDM3A) was identified as mediator of hypoxia/HIF regulation of Mmp12. Knockdown of KDM3A in rat TS cells inhibited the expression of a subset of the hypoxia–hypoxia inducible factor (HIF)-dependent transcripts, including Mmp12, altered H3K9 methylation status, and decreased hypoxia-induced trophoblast cell invasion in vitro and in vivo. The hypoxia-HIF-KDM3A-MMP12 regulatory circuit is conserved and facilitates placental adaptations to environmental challenges.


Proceedings of the National Academy of Sciences of the United States of America | 2016

Rethinking progesterone regulation of female reproductive cyclicity

Kaiyu Kubota; Wei Cui; Pramod Dhakal; Michael W. Wolfe; M.A. Karim Rumi; Jay L. Vivian; Katherine F. Roby; Michael J. Soares

Significance Progesterone possesses an essential role in regulating female fertility, with prominent actions throughout the female reproductive axis. The neuroendocrine actions of progesterone have been viewed as critical for the control of the female reproductive cycle. This basic principle has been reinforced by in vivo experimental paradigms, using hormone replacement as well as pharmacologic and genetic disruption of the progesterone receptor (PGR). Phenotypic characterization of Pgr null rats strengthens roles for progesterone in the regulation of female fertility, but not roles for progesterone as an essential determinant of female reproductive cyclicity, challenging an elemental principle of mammalian reproductive biology. Such findings demonstrate the benefits of genome editing in expanding available animal models for physiologic investigation. The progesterone receptor (PGR) is a ligand-activated transcription factor with key roles in the regulation of female fertility. Much has been learned of the actions of PGR signaling through the use of pharmacologic inhibitors and genetic manipulation, using mouse mutagenesis. Characterization of rats with a null mutation at the Pgr locus has forced a reexamination of the role of progesterone in the regulation of the female reproductive cycle. We generated two Pgr mutant rat models, using genome editing. In both cases, deletions yielded a null mutation resulting from a nonsense frame-shift and the emergence of a stop codon. Similar to Pgr null mice, Pgr null rats were infertile because of deficits in sexual behavior, ovulation, and uterine endometrial differentiation. However, in contrast to the reported phenotype of female mice with disruptions in Pgr signaling, Pgr null female rats exhibit robust estrous cycles. Cyclic changes in vaginal cytology, uterine histology, serum hormone levels, and wheel running activity were evident in Pgr null female rats, similar to wild-type controls. Furthermore, exogenous progesterone treatment inhibited estrous cycles in wild-type female rats but not in Pgr-null female rats. As previously reported, pharmacologic antagonism supports a role for PGR signaling in the regulation of the ovulatory gonadotropin surge, a result at variance with experimentation using genetic ablation of PGR signaling. To conclude, our findings in the Pgr null rat challenge current assumptions and prompt a reevaluation of the hormonal control of reproductive cyclicity.


Journal of Biological Chemistry | 2017

Sustained O-GlcNAcylation reprograms mitochondrial function to regulate energy metabolism

Ee Phie Tan; Steven R. McGreal; Stefan Graw; Robert Tessman; Scott J. Koppel; Pramod Dhakal; Zhen Zhang; Miranda Machacek; Natasha E. Zachara; Devin C. Koestler; Kenneth R. Peterson; John P. Thyfault; Russell H. Swerdlow; Partha Krishnamurthy; Luciano DiTacchio; Udayan Apte; Chad Slawson

Dysfunctional mitochondria and generation of reactive oxygen species (ROS) promote chronic diseases, which have spurred interest in the molecular mechanisms underlying these conditions. Previously, we have demonstrated that disruption of post-translational modification of proteins with β-linked N-acetylglucosamine (O-GlcNAcylation) via overexpression of the O-GlcNAc-regulating enzymes O-GlcNAc transferase (OGT) or O-GlcNAcase (OGA) impairs mitochondrial function. Here, we report that sustained alterations in O-GlcNAcylation either by pharmacological or genetic manipulation also alter metabolic function. Sustained O-GlcNAc elevation in SH-SY5Y neuroblastoma cells increased OGA expression and reduced cellular respiration and ROS generation. Cells with elevated O-GlcNAc levels had elongated mitochondria and increased mitochondrial membrane potential, and RNA-sequencing analysis indicated transcriptome reprogramming and down-regulation of the NRF2-mediated antioxidant response. Sustained O-GlcNAcylation in mouse brain and liver validated the metabolic phenotypes observed in the cells, and OGT knockdown in the liver elevated ROS levels, impaired respiration, and increased the NRF2 antioxidant response. Moreover, elevated O-GlcNAc levels promoted weight loss and lowered respiration in mice and skewed the mice toward carbohydrate-dependent metabolism as determined by indirect calorimetry. In summary, sustained elevation in O-GlcNAcylation coupled with increased OGA expression reprograms energy metabolism, a finding that has potential implications for the etiology, development, and management of metabolic diseases.


Endocrinology | 2017

Defining the Role of Estrogen Receptor β in the Regulation of Female Fertility

M.A. Karim Rumi; Prabhakar Singh; Katherine F. Roby; Xiao Zhao; Khursheed Iqbal; Anamika Ratri; Tianhua Lei; Wei Cui; Shaon Borosha; Pramod Dhakal; Kaiyu Kubota; Damayanti Chakraborty; Jay L. Vivian; Michael W. Wolfe; Michael J. Soares

Estrogens are essential hormones for the regulation of fertility. Cellular responses to estrogens are mediated by estrogen receptor α (ESR1) and estrogen receptor β (ESR2). In mouse and rat models, disruption of Esr1 causes infertility in both males and females. However, the role of ESR2 in reproductive function remains undecided because of a wide variation in phenotypic observations among Esr2-mutant mouse strains. Regulatory pathways independent of ESR2 binding to its cognate DNA response element have also been implicated in ESR2 signaling. To clarify the regulatory roles of ESR2, we generated two mutant rat models: one with a null mutation (exon 3 deletion, Esr2ΔE3) and the other with an inframe deletion selectively disrupting the DNA binding domain (exon 4 deletion, Esr2ΔE4). In both models, we observed that ESR2-mutant males were fertile. ESR2-mutant females exhibited regular estrous cycles and could be inseminated by wild-type (WT) males but did not become pregnant or pseudopregnant. Esr2-mutant ovaries were small and differed from WT ovaries by their absence of corpora lutea, despite the presence of follicles at various stages of development. Esr2ΔE3- and Esr2ΔE4-mutant females exhibited attenuated preovulatory gonadotropin surges and did not ovulate in response to a gonadotropin regimen effective in WT rats. Similarities of reproductive deficits in Esr2ΔE3 and Esr2ΔE4 mutants suggest that DNA binding-dependent transcriptional function of ESR2 is critical for preovulatory follicle maturation and ovulation. Overall, the findings indicate that neuroendocrine and ovarian deficits are linked to infertility observed in Esr2-mutant rats.


Endocrinology | 2015

Neonatal Progesterone Programs Adult Uterine Responses to Progesterone and Susceptibility to Uterine Dysfunction.

Pramod Dhakal; M.A. Karim Rumi; Kaiyu Kubota; Damayanti Chakraborty; Jeremy Chien; Katherine F. Roby; Michael J. Soares

In this report, we investigated the consequences of neonatal progesterone exposure on adult rat uterine function. Female pups were subcutaneously injected with vehicle or progesterone from postnatal days 3 to 9. Early progesterone exposure affected endometrial gland biogenesis, puberty, decidualization, and fertility. Because decidualization and pregnancy success are directly linked to progesterone action on the uterus, we investigated the responsiveness of the adult uterus to progesterone. We first identified progesterone-dependent uterine gene expression using RNA sequencing and quantitative RT-PCR in Holtzman Sprague-Dawley rats and progesterone-resistant Brown Norway rats. The impact of neonatal progesterone treatment on adult uterine progesterone responsiveness was next investigated using quantitative RT-PCR. Progesterone resistance affected the spectrum and total number of progesterone-responsive genes and the magnitude of uterine responses for a subset of progesterone targets. Several progesterone-responsive genes in adult uterus exhibited significantly dampened responses in neonatally progesterone-treated females compared with those of vehicle-treated controls, whereas other progesterone-responsive transcripts did not differ between female rats exposed to vehicle or progesterone as neonates. The organizational actions of progesterone on the uterus were dependent on signaling through the progesterone receptor but not estrogen receptor 1. To summarize, neonatal progesterone exposure leads to disturbances in endometrial gland biogenesis, progesterone resistance, and uterine dysfunction. Neonatal progesterone effectively programs adult uterine responsiveness to progesterone.


Biology of Reproduction | 2016

A Prolactin Family Paralog Regulates Placental Adaptations to a Physiological Stressor

Pengli Bu; Sheikh M. Khorshed Alam; Pramod Dhakal; Jay L. Vivian; Michael J. Soares

ABSTRACT The prolactin (PRL) family of hormones and cytokines participates in the regulation of optimal reproductive performance in the mouse and rat. Members of the PRL family are expressed in the anterior pituitary, uterus, and/or placenta. In the present study, we investigated the ontogeny of PRL family 7, subfamily b, member 1 (PRL7B1; also called PRL-like protein-N, PLP-N) expression in the developing mouse placenta and established a mouse model for investigating the biological function of PRL7B1. Transcripts for Prl7b1 were first detected on Gestation Day (d) 8.5. From gestation d8.5 through d14.5, Prl7b1 was expressed in trophoblast cells residing at the interface between maternal mesometrial decidua and the developing placenta. On gestation d17.5, the predominant cellular source of Prl7b1 mRNA was migratory trophoblast cells invading into the uterine mesometrial decidua. The Prl7b1 null mutant allele was generated via replacement of the endogenous Prl7b1 coding sequence with beta-galactosidase (LacZ) reporter and neomycin cassettes. The mutant Prl7b1 allele was successfully passed through the germline. Homozygous Prl7b1 mutant mice were viable and fertile. Under standard animal housing conditions, Prl7b1 had undetectable effects on placentation and pregnancy. Hypoxia exposure during pregnancy evoked adaptations in the organization of the wild-type placenta that were not observed in Prl7b1 null placentation sites. In summary, PRL7B1 is viewed as a part of a pathway regulating placental adaptations to physiological stressors.


Reproduction | 2016

CITED2 MODULATION OF TROPHOBLAST CELL DIFFERENTIATION: INSIGHTS FROM GLOBAL TRANSCRIPTOME ANALYSIS

Kazuhiko Imakawa; Pramod Dhakal; Kaiyu Kubota; Kazuya Kusama; Damayanti Chakraborty; M.A. Karim Rumi; Michael J. Soares

Trophoblast stem (TS) cells possess the capacity to differentiate along a multi-lineage pathway yielding several specialized cell types. The regulatory network controlling trophoblast cell differentiation is poorly understood. Cbp/p300-interacting transactivator with Glu/Asp-rich carboxy-terminal domain, 2 (CITED2) has been implicated in the regulation of placentation; however, we know little about how CITED2 acts to influence trophoblast cells. Rat Rcho-1 TS cells can be manipulated to proliferate or differentiate into specialized trophoblast lineages and are an excellent model for investigating trophoblast differentiation. CITED2 transcript and protein showed a robust induction during Rcho-1 TS cell differentiation. We used an shRNA knockdown approach to disrupt CITED2 expression in order to investigate its involvement in trophoblast cell differentiation. RNA-sequencing was used to examine the impact of CITED2 on trophoblast cell differentiation. CITED2 disruption affected the differentiating trophoblast cell transcriptome. CITED2 possessed a prominent role in the regulation of cell differentiation with links to several signal transduction pathways and to hypoxia-regulated and coagulation processes. In summary, our findings indicate that CITED2 contributes to the regulation of trophoblast cell differentiation.


BioTechniques | 2017

Single-step PCR-based genetic sex determination of rat tissues and cells

Pramod Dhakal; Michael J. Soares

The advent of genome editing strategies has expanded the range of animal models available for gene manipulation and renewed research interest in the rat. Gender is a key variable for in vivo gene function analyses. Here, we present a simple PCR-based method to determine genetic sex in the rat.


Journal of Endocrinology | 2017

Origin of a rapidly evolving homeostatic control system programming testis function

Pengli Bu; Shintaro Yagi; Kunio Shiota; S.M. Khorshed Alam; Jay L. Vivian; Michael W. Wolfe; M.A. Karim Rumi; Damayanti Chakraborty; Kaiyu Kubota; Pramod Dhakal; Michael J. Soares

Collaboration


Dive into the Pramod Dhakal's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Wei Cui

Shandong Agricultural University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge