Pramod Kumar Rompikuntal
Umeå University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Pramod Kumar Rompikuntal.
BMC Microbiology | 2009
Barbro Lindmark; Pramod Kumar Rompikuntal; Karolis Vaitkevicius; Tianyan Song; Yoshimitsu Mizunoe; Bernt Eric Uhlin; Patricia Guerry; Sun Nyunt Wai
BackgroundBackground: Cytolethal distending toxin (CDT) is one of the well-characterized virulence factors of Campylobacter jejuni, but it is unknown how CDT becomes surface-exposed or is released from the bacterium to the surrounding environment.ResultsOur data suggest that CDT is secreted to the bacterial culture supernatant via outer membrane vesicles (OMVs) released from the bacteria. All three subunits (the CdtA, CdtB, and CdtC proteins) were detected by immunogold labeling and electron microscopy of OMVs. Subcellular fractionation of the bacteria indicated that, apart from the majority of CDT detected in the cytoplasmic compartment, appreciable amounts (20-50%) of the cellular pool of CDT proteins were present in the periplasmic compartment. In the bacterial culture supernatant, we found that a majority of the extracellular CDT was tightly associated with the OMVs. Isolated OMVs could exert the cell distending effects typical of CDT on a human intestinal cell line, indicating that CDT is present there in a biologically active form.ConclusionOur results strongly suggest that the release of outer membrane vesicles is functioning as a route of C. jejuni to deliver all the subunits of CDT toxin (CdtA, CdtB, and CdtC) to the surrounding environment, including infected host tissue.
PLOS ONE | 2009
Takahiko Ishikawa; Pramod Kumar Rompikuntal; Barbro Lindmark; Debra L. Milton; Sun Nyunt Wai
Background The type VI secretion system (T6SS) has emerged as a protein secretion system important to several Gram-negative bacterial species. One of the common components of the system is Hcp, initially described as a hemolysin co-regulated protein in a serotype O17 strain of Vibrio cholerae. Homologs to V. cholerae hcp genes have been found in all characterized type VI secretion systems and they are present also in the serotype O1 strains of V. cholerae that are the cause of cholera diseases but seemed to have non-functional T6SS. Methodology/Principal Findings The serotype O1 V. cholerae strain A1552 was shown to express detectable levels of Hcp as determined by immunoblot analyses using polyclonal anti-Hcp antiserum. We found that the expression of Hcp was growth phase dependent. The levels of Hcp in quorum sensing deficient mutants of V. cholerae were compared with the levels in wild type V. cholerae O1 strain A1552. The expression of Hcp was positively and negatively regulated by the quorum sensing regulators HapR and LuxO, respectively. In addition, we observed that expression of Hcp was dependent on the cAMP-CRP global transcriptional regulatory complex and required the RpoN sigma factor. Conclusion/Significance Our results show that serotype O1 strains of V. cholerae do express Hcp which is regarded as one of the important T6SS components and is one of the secreted substrates in non-O1 non-O139 V. cholerae isolates. We found that expression of Hcp was strictly regulated by the quorum sensing system in the V. cholerae O1 strain. In addition, the expression of Hcp required the alternative sigma factor RpoN and the cAMP-CRP global regulatory complex. Interestingly, the environmental isolates of V. cholerae O1 strains that showed higher levels of the HapR quorum sensing regulator in comparison with our laboratory standard serotype O1 strain A1552 where also expressing higher levels of Hcp.
Infection and Immunity | 2012
Pramod Kumar Rompikuntal; Bernard Thay; Muhammad Khanzeb Khan; Anna-Maija Penttinen; Sirkka Asikainen; Sun Nyunt Wai; Jan Oscarsson
ABSTRACT Aggregatibacter actinomycetemcomitans is implicated in aggressive forms of periodontitis. Similarly to several other Gram-negative species, this organism produces and excretes a cytolethal distending toxin (CDT), a genotoxin associated with cell distention, G2 cell cycle arrest, and/or apoptosis in many mammalian cell types. In this study, we have identified A. actinomycetemcomitans outer membrane vesicles (OMVs) as a vehicle for simultaneous delivery of multiple proteins, including CDT, into human cells. The OMV proteins were internalized in both HeLa cells and human gingival fibroblasts (HGF) via a mechanism of OMV fusion with lipid rafts in the plasma membrane. The active toxin unit, CdtB, was localized inside the nucleus of the intoxicated cells, whereas OmpA and proteins detected using an antibody specific to whole A. actinomycetemcomitans serotype a cells had a perinuclear distribution. In accordance with a tight association of CdtB with OMVs, vesicles isolated from A. actinomycetemcomitans strain D7SS (serotype a), in contrast to OMVs from a D7SS cdtABC mutant, induced a cytolethal distending effect on HeLa and HGF cells, indicating that OMV-associated CDT was biologically active. Association of CDT with OMVs was also observed in A. actinomycetemcomitans isolates belonging to serotypes b and c, indicating that OMV-mediated release of CDT may be conserved in A. actinomycetemcomitans. Although the role of A. actinomycetemcomitans OMVs in periodontal disease has not yet been elucidated, our present data suggest that OMVs could deliver biologically active CDT and additional virulence factors into susceptible cells of the periodontium.
Infection and Immunity | 2011
Harald Bielig; Pramod Kumar Rompikuntal; Mitesh Dongre; Birte Zurek; B. Lindmark; M. Ramstedt; Sun Nyunt Wai; Thomas A. Kufer
ABSTRACT Vibrio cholerae is an inhabitant of aquatic systems and one of the causative agents of severe dehydrating diarrhea in humans. It has also emerged as an important cause of different kinds of inflammatory responses, and in particular, V. cholerae strains of the non-O1 non-O139 serogroups (NOVC) have been associated with such infections in human. We analyzed the potential of outer membrane vesicles (OMVs) derived from the NOVC strain V:5/04 to induce inflammatory responses in human host cells. V:5/04 OMVs were taken up by human epithelial cells and induced inflammatory responses. Small interfering RNA (siRNA)-mediated gene knockdown revealed that the inflammatory potential of NOVC OMVs was partially mediated by the nucleotide-binding domain-, leucine-rich repeat-containing family member NOD1. Physiochemical analysis of the content of these OMVs, in conjunction with NOD1 and NOD2 reporter assays in HEK293T cells, confirmed the presence of both NOD1 and NOD2 active peptidoglycan in the OMVs. Furthermore, we show that deletion of the quorum-sensing regulator HapR, which mimics an infective life style, specifically reduced the inflammatory potential of the V:5/04 OMVs and their ability to activate NOD1 and NOD2. In conclusion, our study shows that NOVC OMVs elicit immune responses mediated by NOD1 and NOD2 in mammalian host cells. Moreover, we provide evidence that the quorum-sensing machinery plays an important regulatory role in this process by attenuating the inflammatory potential of OMVs under infective conditions. This work thus identifies a new facet of how Vibrio affects host immune responses and defines a role for the quorum-sensing machinery in this process.
Infection and Immunity | 2009
Soni Priya Valeru; Pramod Kumar Rompikuntal; Takahiko Ishikawa; Karolis Vaitkevicius; Åsa Sjöling; Nadia A. Dolganov; Jun Zhu; Gary K. Schoolnik; Sun Nyunt Wai
ABSTRACT We identified the mutated gene locus in a pigment-overproducing Vibrio cholerae mutant of strain A1552. The deduced gene product is suggested to be an oxidoreductase based on partial homology to putative homogentisate 1,2-dioxygenase in Pseudomonas aeruginosa and Mesorhizobium loti, and we propose that the gene VC1345 in the V. cholerae genome be denoted hmgA in accordance with the nomenclature for other species. The hmgA::mini-Tn5 mutant showed a nonpigmented phenotype after complementation with a plasmid clone carrying the WT hmgA+ locus. Microarray transcription analysis revealed that expression of hmgA and the neighboring genes encoding a postulated two-component sensor system was growth phase dependent. Results from quantitative reverse transcription-PCR analysis showed that hmgA operon expression was reduced in the rpoS mutant, but pigment production by the WT V. cholerae or the hmgA mutant was not detectably influenced by the stationary-phase regulator RpoS. The pigmented mutant showed increased UV resistance in comparison with the WT strain. Interestingly, the pigment-producing mutant expressed more toxin-coregulated pilus and cholera toxin than WT V. cholerae. Moreover, the hmgA mutant showed a fivefold increase in the ability to colonize the intestines of infant mice. A possible mechanism by which pigment production might cause induction of the ToxR regulon due to generation of hydrogen peroxide was supported by results from tests showing that externally supplied H2O2 led to higher TcpA levels. Taken together, our findings suggest that melanin pigment formation may play a role in V. cholerae virulence factor expression.
FEBS Journal | 2008
Karolis Vaitkevicius; Pramod Kumar Rompikuntal; Barbro Lindmark; Rimas Vaitkevicius; Tianyan Song; Sun Nyunt Wai
The Vibrio metalloprotease PrtV was purified from the culture supernatant of a Vibrio cholerae derivative that is deficient in several other secreted peptidases, including the otherwise abundant hemagglutinin/protease HapA. The PrtV is synthesized as a 102 kDa protein, but undergoes several N‐ and C‐terminal processing steps during V. cholerae envelope translocation and prolonged incubation. Purified V. cholerae PrtV protease forms of 81 or 73 kDa were stabilized by calcium ions. Removal of calcium resulted in further rapid autoproteolysis. The two major products of autoproteolysis of the PrtV protease were approximately 37 and 18 kDa and could not be separated under non‐denaturing conditions, indicating they are interacting domains. In an assay using cultured cells of the human intestinal cell line HCT8, the PrtV protein showed a cytotoxic effect leading to cell death. Using human blood plasma as a source of potential substrates of mammalian origin for the PrtV protease, we found that the extracellular matrix components fibronectin and fibrinogen were degraded by the enzyme. Additional tests with individual protein substrates revealed that plasminogen was also a possible target for the PrtV protease.
PLOS ONE | 2010
Aurelia Syngkon; Sridhar Elluri; Hemanta Koley; Pramod Kumar Rompikuntal; Dhira Rani Saha; Manoj K. Chakrabarti; Rupak K. Bhadra; Sun Nyunt Wai; Amit Pal
Background Two well-characterized proteases secreted by Vibrio cholerae O1 strains are hemagglutinin protease (HAP) and V. cholerae protease (PrtV). The hapA and prtV knock out mutant, V. cholerae O1 strain CHA6.8ΔprtV, still retains residual protease activity. We initiated this study to characterize the protease present in CHA6.8ΔprtV strain and study its role in pathogenesis in rabbit ileal loop model (RIL). Methodology/Principal Findings We partially purified the residual protease secreted by strain CHA6.8ΔprtV from culture supernatant by anion-exchange chromatography. The major protein band in native PAGE was identified by MS peptide mapping and sequence analysis showed homology with a 59-kDa trypsin-like serine protease encoded by VC1649. The protease activity was partially inhibited by 25 mM PMSF and 10 mM EDTA and completely inhibited by EDTA and PMSF together. RIL assay with culture supernatants of strains C6709 (FA ratio 1.1+/−0.3 n = 3), CHA6.8 (FA ratio 1.08+/−0.2 n = 3), CHA6.8ΔprtV (FA ratio 1.02+/−0.2 n = 3) and partially purified serine protease from CHA6.8ΔprtV (FA ratio 1.2+/−0.3 n = 3) induced fluid accumulation and histopathological studies on rabbit ileum showed destruction of the villus structure with hemorrhage in all layers of the mucosa. RIL assay with culture supernatant of CHA6.8ΔprtVΔVC1649 strain (FA ratio 0.11+/−0.005 n = 3) and with protease incubated with PMSF and EDTA (FA ratio 0.3+/−0.05 n = 3) induced a significantly reduced FA ratio with almost complete normal villus structure. Conclusion Our results show the presence of a novel 59-kDa serine protease in a ΔhapAΔprtV V. cholerae O1 strain and its role in hemorrhagic response in RIL model.
PLOS ONE | 2014
Sridhar Elluri; Constance Enow; Svitlana Vdovikova; Pramod Kumar Rompikuntal; Mitesh Dongre; Sven R. Carlsson; Amit Pal; Bernt Eric Uhlin; Sun Nyunt Wai
Background Outer membrane vesicles (OMVs) released from Gram-negative bacteria can serve as vehicles for the translocation of virulence factors. Vibrio cholerae produce OMVs but their putative role in translocation of effectors involved in pathogenesis has not been well elucidated. The V. cholerae cytolysin (VCC), is a pore-forming toxin that lyses target eukaryotic cells by forming transmembrane oligomeric β-barrel channels. It is considered a potent toxin that contributes to V. cholerae pathogenesis. The mechanisms involved in the secretion and delivery of the VCC have not been extensively studied. Methodology/Principal Findings OMVs from V. cholerae strains were isolated and purified using a differential centrifugation procedure and Optiprep centrifugation. The ultrastructure and the contents of OMVs were examined under the electron microscope and by immunoblot analyses respectively. We demonstrated that VCC from V. cholerae strain V:5/04 was secreted in association with OMVs and the release of VCC via OMVs is a common feature among V. cholerae strains. The biological activity of OMV-associated VCC was investigated using contact hemolytic assay and epithelial cell cytotoxicity test. It showed toxic activity on both red blood cells and epithelial cells. Our results indicate that the OMVs architecture might play a role in stability of VCC and thereby can enhance its biological activities in comparison with the free secreted VCC. Furthermore, we tested the role of OMV-associated VCC in host cell autophagy signalling using confocal microscopy and immunoblot analysis. We observed that OMV-associated VCC triggered an autophagy response in the target cell and our findings demonstrated for the first time that autophagy may operate as a cellular defence mechanism against an OMV-associated bacterial virulence factor. Conclusion/Significance Biological assays of OMVs from the V. cholerae strain V:5/04 demonstrated that OMV-associated VCC is indeed biologically active and induces toxicity on mammalian cells and furthermore can induce autophagy.
PLOS ONE | 2015
Pramod Kumar Rompikuntal; Svitlana Vdovikova; Marylise Duperthuy; Tanya L. Johnson; Monika K. Åhlund; Richard Lundmark; Jan Oscarsson; Maria Sandkvist; Bernt Eric Uhlin; Sun Nyunt Wai
Background Outer membrane vesicles (OMVs) are known to release from almost all Gram-negative bacteria during normal growth. OMVs carry different biologically active toxins and enzymes into the surrounding environment. We suggest that OMVs may therefore be able to transport bacterial proteases into the target host cells. We present here an analysis of the Vibrio cholerae OMV-associated protease PrtV. Methodology/Principal Findings In this study, we demonstrated that PrtV was secreted from the wild type V. cholerae strain C6706 via the type II secretion system in association with OMVs. By immunoblotting and electron microscopic analysis using immunogold labeling, the association of PrtV with OMVs was examined. We demonstrated that OMV-associated PrtV was biologically active by showing altered morphology and detachment of cells when the human ileocecum carcinoma (HCT8) cells were treated with OMVs from the wild type V. cholerae strain C6706 whereas cells treated with OMVs from the prtV isogenic mutant showed no morphological changes. Furthermore, OMV-associated PrtV protease showed a contribution to bacterial resistance towards the antimicrobial peptide LL-37. Conclusion/Significance Our findings suggest that OMVs released from V. cholerae can deliver a processed, biologically active form of PrtV that contributes to bacterial interactions with target host cells.
FEBS Open Bio | 2013
Aaron Edwin; Pramod Kumar Rompikuntal; Erik Björn; Gunter Stier; Sun Nyunt Wai; Elisabeth Sauer-Eriksson
Vibrio cholerae, the causative agent of cholera, releases several virulence factors including secreted proteases when it infects its host. These factors attack host cell proteins and break down tissue barriers and cellular matrix components such as collagen, laminin, fibronectin, keratin, elastin, and they induce necrotic tissue damage. The secreted protease PrtV constitutes one virulence factors of V. cholerae. It is a metalloprotease belonging to the M6 peptidase family. The protein is expressed as an inactive, multidomain, 102 kDa pre‐pro‐protein that undergoes several N‐ and C‐terminal modifications after which it is secreted as an intermediate variant of 81 kDa. After secretion from the bacteria, additional proteolytic steps occur to produce the 55 kDa active M6 metalloprotease. The domain arrangement of PrtV is likely to play an important role in these maturation steps, which are known to be regulated by calcium. However, the molecular mechanism by which calcium controls proteolysis is unknown. In this study, we report the atomic resolution crystal structure of the PKD1 domain from V. cholera PrtV (residues 755–838) determined at 1.1 Å. The structure reveals a previously uncharacterized Ca2+‐binding site located near linker regions between domains. Conformational changes in the Ca2+‐free and Ca2+‐bound forms suggest that Ca2+‐binding at the PKD1 domain controls domain linker flexibility, and plays an important structural role, providing stability to the PrtV protein.