Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Pran K. Datta is active.

Publication


Featured researches published by Pran K. Datta.


Expert Opinion on Investigational Drugs | 2010

Targeting the transforming growth factor-β signaling pathway in human cancer

Nagathihalli S. Nagaraj; Pran K. Datta

The transforming growth factor-ß (TGF-β) signaling pathway plays a pivotal role in diverse cellular processes. TGF-β switches its role from a tumor suppressor in normal or dysplastic cells to a tumor promoter in advanced cancers. It is widely believed that the Smad-dependent pathway is involved in TGF-β tumor-suppressive functions, whereas activation of Smad-independent pathways, coupled with the loss of tumor-suppressor functions of TGF-β, is important for its pro-oncogenic functions. TGF-β signaling has been considered a useful therapeutic target. The discovery of oncogenic actions of TGF-β has generated a great deal of enthusiasm for developing TGF-β signaling inhibitors for the treatment of cancer. The challenge is to identify the group of patients where targeted tumors are not only refractory to TGF-β-induced tumor suppressor functions but also responsive to the tumor-promoting effects of TGF-β. TGF-β pathway inhibitors, including small and large molecules, have now entered clinical trials. Preclinical studies with these inhibitors have shown promise in a variety of different tumor models. Here, we focus on the mechanisms of signaling and specific targets of the TGF-β pathway that are critical effectors of tumor progression and invasion. This report also examines the therapeutic intervention of TGF-ß signaling in human cancers.


Molecular and Cellular Biology | 2000

STRAP and Smad7 synergize in the inhibition of transforming growth factor beta signaling.

Pran K. Datta; Harold L. Moses

ABSTRACT Smad proteins play a key role in the intracellular signaling of the transforming growth factor β (TGF-β) superfamily of extracellular polypeptides that initiate signaling from the cell surface through serine/threonine kinase receptors. A subclass of Smad proteins, including Smad6 and Smad7, has been shown to function as intracellular antagonists of TGF-β family signaling. We have previously reported the identification of a WD40 repeat protein, STRAP, that associates with both type I and type II TGF-β receptors and that is involved in TGF-β signaling. Here we demonstrate that STRAP synergizes specifically with Smad7, but not with Smad6, in the inhibition of TGF-β-induced transcriptional responses. STRAP does not show cooperation with a C-terminal deletion mutant of Smad7 that does not bind with the receptor and consequently has no inhibitory activity. STRAP associates stably with Smad7, but not with the Smad7 mutant. STRAP recruits Smad7 to the activated type I receptor and forms a complex. Moreover, STRAP stabilizes the association between Smad7 and the activated receptor, thus assisting Smad7 in preventing Smad2 and Smad3 access to the receptor. STRAP interacts with Smad2 and Smad3 but does not cooperate functionally with these Smads to transactivate TGF-β-dependent transcription. The C terminus of STRAP is required for its phosphorylation in vivo, which is dependent on the TGF-β receptor kinases. Thus, we describe a mechanism to explain how STRAP and Smad7 function synergistically to block TGF-β-induced transcriptional activation.


Gastroenterology | 2010

Antimetastatic Role of Smad4 Signaling in Colorectal Cancer

Bixiang Zhang; Sunil K. Halder; Nilesh D. Kashikar; Yong–Jig Cho; Arunima Datta; D. Lee Gorden; Pran K. Datta

BACKGROUND & AIMS Transforming growth factor (TGF)-beta signaling occurs through Smads 2/3/4, which translocate to the nucleus to regulate transcription; TGF-beta has tumor-suppressive effects in some tumor models and pro-metastatic effects in others. In patients with colorectal cancer (CRC), mutations or reduced levels of Smad4 have been correlated with reduced survival. However, the function of Smad signaling and the effects of TGF-beta-receptor kinase inhibitors have not been analyzed during CRC metastasis. We investigated the role of TGF-beta/Smad signaling in CRC progression. METHODS We evaluated the role of TGF-beta/Smad signaling on cell proliferation, migration, invasion, tumorigenicity, and metastasis in Smad4-null colon carcinoma cell lines (MC38 and SW620) and in those that transgenically express Smad4. We also determined the effects of a TGF-beta-receptor kinase inhibitor (LY2109761) in CRC tumor progression and metastasis in mice. RESULTS TGF-beta induced migration/invasion, tumorigenicity, and metastasis of Smad4-null MC38 and SW620 cells; incubation with LY2109761 reversed these effects. In mice, LY2109761 blocked metastasis of CRC cells to liver, inducing cancer cell expression of E-cadherin and reducing the expression of the tumorigenic proteins matrix metalloproteinase-9, nm23, urokinase plasminogen activator, and cyclooxygenase-2. Transgenic expression of Smad4 significantly reduced the oncogenic potential of MC38 and SW620 cells; in these transgenic cells, TGF-beta had tumor suppressor, rather than tumorigenic, effects. CONCLUSIONS TGF-beta/Smad signaling suppresses progression and metastasis of CRC cells and tumors in mice. Loss of Smad4 might underlie the functional shift of TGF-beta from a tumor suppressor to a tumor promoter; inhibitors of TGF-beta signaling might be developed as CRC therapeutics.


Molecular and Cellular Biology | 1995

Association of p107 with Sp1: genetically separable regions of p107 are involved in regulation of E2F- and Sp1-dependent transcription.

Pran K. Datta; Pradip Raychaudhuri; Srilata Bagchi

The retinoblastoma-related protein p107 has been shown to be a regulator of the transcription factor E2F. p107 associates with E2F via its pocket region and represses E2F-dependent transcription. In this study, we provide evidence for a novel interaction between p107 and the transcription factor Sp1. We show that p107 can be found endogenously associated with Sp1 in the extracts of several different cell lines. Moreover, in transient transfection assays, expression of p107 represses Sp1-dependent transcription. This repression of Sp1-dependent transcription does not require the DNA-binding domain of Sp1. Transcription driven by a chimeric protein containing the Ga14 DNA-binding domain and the Sp1 activation domains is inhibited by p107. Interestingly, unlike the repression of E2F-dependent transcription, the repression of Sp1-dependent transcription does not depend on an intact pocket region. We show that distinct regions of p107 are involved in the control of Sp1 and E2F.


Cancer Letters | 2009

Targeting Transforming Growth Factor-β signaling in liver metastasis of colon cancer

Bixiang Zhang; Sunil K. Halder; Sanguo Zhang; Pran K. Datta

Despite a primary tumor suppressor role, there is compelling evidence suggesting that TGF-beta can promote tumor growth, invasion and metastasis in advanced stages of colorectal cancer. Blocking these tumor-promoting effects of TGF-beta provides a potentially important therapeutic strategy for the treatment of colorectal cancer. However, little is known about how the inhibitors of TGF-beta receptor kinases affect colorectal carcinogenesis in vivo. Here, we have observed that a novel dual kinase inhibitor of TGF-beta type I and type II receptors, LY2109761, inhibits TGF-beta-mediated activation of Smad and non-Smad pathways in CT26 colon adenocarcinoma cells having K-Ras mutation. The inhibitor attenuates the oncogenic effects of TGF-beta on cell migration, invasion and tumorigenicity of CT26 cells. Furthermore, LY2109761 decreases liver metastases and prolongs survival in an experimental metastasis model. These findings suggest that the dual kinase inhibitor LY2109761 has potential therapeutic value for metastatic colorectal cancer.


British Journal of Cancer | 2008

Smad7 induces hepatic metastasis in colorectal cancer

Sunil K. Halder; G Rachakonda; N G Deane; Pran K. Datta

Although Smad signalling is known to play a tumour suppressor role, it has been shown to play a prometastatic function also in breast cancer and melanoma metastasis to bone. In contrast, mutation or reduced level of Smad4 in colorectal cancer is directly correlated to poor survival and increased metastasis. However, the functional role of Smad signalling in metastasis of colorectal cancer has not been elucidated. We previously reported that overexpression of Smad7 in colon adenocarcinoma (FET) cells induces tumorigenicity by blocking TGF-β-induced growth inhibition and apoptosis. Here, we have observed that abrogation of Smad signalling by Smad7 induces liver metastasis in a splenic injection model. Polymerase chain reaction with genomic DNA from liver metastases indicates that cells expressing Smad7 migrated to the liver. Increased expression of TGF-β type II receptor in liver metastases is associated with phosphorylation and nuclear accumulation of Smad2. Immunohistochemical analyses have suggested poorly differentiated spindle cell morphology and higher cell proliferation in Smad7-induced liver metastases. Interestingly, we have observed increased expression and junctional staining of Claudin-1, Claudin-4 and E-cadherin in liver metastases. Therefore, this report demonstrates, for the first time, that blockade of TGF-β/Smad pathway in colon cancer cells induces metastasis, thus supporting an important role of Smad signalling in inhibiting colon cancer metastasis.


Cancer Research | 2007

Smad4 Regulates Claudin-1 Expression in a Transforming Growth Factor-β–Independent Manner in Colon Cancer Cells

Sheng Ru Shiou; Amar B. Singh; Krishnan Moorthy; Pran K. Datta; M. Kay Washington; R. Daniel Beauchamp; Punita Dhawan

We have recently reported that the expression of a tight junction protein, claudin-1, is increased during colon carcinogenesis and particularly metastatic colorectal cancer. Manipulation of claudin-1 levels in colon cancer cells showed a positive correlation between claudin-1 expression and tumor growth and metastasis. However, the mechanisms underlying the increased claudin-1 expression in colorectal cancer remains unknown. The tumor suppressor Smad4 is a central intracellular signal transduction component of the transforming growth factor-beta (TGF-beta) family of cytokines. Loss of Smad4 protein expression is correlated with poor prognosis and is frequently observed in invasive and metastatic colorectal carcinoma. In the present study, we report an inverse relationship between Smad4 and claudin-1 expression in human colorectal carcinoma tumor samples and in human colon cancer cell lines. We found that the expression of Smad4 in Smad4-deficient but claudin-1-positive SW480 or HT29 colon cancer cell lines down-regulates claudin-1 expression through transcriptional repression by modulating beta-catenin/T-cell factor/lymphocyte enhancer factor activity. Furthermore, this Smad4-dependent inhibition of claudin-1 expression is independent of TGF-beta signaling because Smad4 expression alone is insufficient to restore TGF-beta signaling in the SW480 cells, and the selective TGF-beta receptor kinase inhibitor LY364947 did not prevent the Smad4 suppression of claudin-1 protein expression in either SW480 or HT29 cells. Taken together, these findings suggest a novel mechanism underlying Smad4 tumor-suppressive function through regulation of a potential metastatic modulator, claudin-1, in a TGF-beta-independent manner.


Cancer Research | 2006

Oncogenic function of a novel WD-domain protein, STRAP, in human carcinogenesis

Sunil K. Halder; Govindaraj Anumanthan; Ramakoti Maddula; Jason R. Mann; Anna Chytil; Adriana Gonzalez; M. Key Washington; Harold L. Moses; R. Daniel Beauchamp; Pran K. Datta

The development and progression of malignancies is a complex multistage process that involves the contribution of a number of genes giving growth advantage to cells when transformed. The role of transforming growth factor-beta (TGF-beta) in carcinogenesis is complex with tumor-suppressor or prooncogenic activities depending on the cell type and the stage of the disease. We have previously reported the identification of a novel WD-domain protein, STRAP, that associates with both TGF-beta receptors and that synergizes with the inhibitory Smad, Smad7, in the negative regulation of TGF-beta-induced transcription. Here, we show that STRAP is ubiquitously expressed and is localized in both cytoplasm and nucleus. STRAP is up-regulated in 60% colon and in 78% lung carcinomas. Stable expression of STRAP results in activation of mitogen-activated protein kinase/extracellular signal-regulated kinase pathway and in down-regulation of the cyclin-dependent kinase inhibitor p21(Cip1), which results in retinoblastoma protein hyperphosphorylation. In addition, we have observed that Smad2/3 phosphorylation, TGF-beta-mediated transcription, and growth inhibition are induced in STRAP-knockout mouse embryonic fibroblasts compared with wild-type cells. Ectopic expression of STRAP in A549 lung adenocarcinoma cell line inhibits TGF-beta-induced growth inhibition and enhances anchorage-independent growth of these cells. Moreover, overexpression of STRAP increases tumorigenicity in athymic nude mice. Knockdown of endogenous STRAP by small interfering RNA increases TGF-beta signaling, reduces ERK activity, increases p21(Cip1) expression, and decreases tumorigenicity. Taken together, these results suggest that up-regulation of STRAP in human cancers may provide growth advantage to tumor cells via TGF-beta-dependent and TGF-beta-independent mechanisms, thus demonstrating the oncogenic function of STRAP.


Journal of Cellular Biochemistry | 1998

Signal transduction by transforming growth factor‐β: A cooperative paradigm with extensive negative regulation

Michael E. Engel; Pran K. Datta; Harold L. Moses

Transforming growth factor‐β (TGF‐β) represents an evolutionarily conserved family of secreted factors that mobilize a complex signaling network to control cell fate by regulating proliferation, differentiation, motility, adhesion, and apoptosis. TGF‐β promotes the assembly of a cell surface receptor complex composed of type I (TβRI) and type II (TβRII) receptor serine/threonine kinases. In response to TGF‐β binding, TβRII recruits and activates TβRI through phosphorylation of the regulatory GS‐domain. Activated TβRI then initiates cytoplasmic signaling pathways to produce cellular responses. SMAD proteins together constitute a unique signaling pathway with key roles in signal transduction by TGF‐β and related factors. Pathway‐restricted SMADs are phosphorylated and activated by type I receptors in response to stimulation by ligand. Once activated, pathway‐restricted SMADs oligomerize with the common‐mediator Smad4 and subsequently translocate to the nucleus. Genetic analysis in Drosophila melanogaster and Caenorhabditis elegans, as well as TβRII and SMAD mutations in human tumors, emphasizes their importance in TGF‐β signaling. Mounting evidence indicates that SMADs cooperate with ubiquitous cytoplasmic signaling cascades and nuclear factors to produce the full spectrum of TGF‐β responses. Operating independently, these ubiquitous elements may influence the nature of cellular responses to TGF‐β. Additionally, a variety of regulatory schemes contribute temporal and/or spatial restriction to TGF‐β responses. This report reviews our current understanding of TGF‐β signal transduction and considers the importance of a cooperative signaling paradigm to TGF‐β‐mediated biological responses. J. Cell. Biochem. Suppls. 30/31:111–122, 1998.


British Journal of Cancer | 2005

Restoration of TGF-β signalling reduces tumorigenicity in human lung cancer cells

Govindaraj Anumanthan; Sunil K. Halder; H Osada; T Takahashi; Pierre P. Massion; David P. Carbone; Pran K. Datta

Members of the transforming growth factor-β (TGF-β) family regulate a wide range of biological processes including cell proliferation, migration, differentiation, apoptosis, and extracellular matrix deposition. Resistance to TGF-β-mediated tumour suppressor function in human lung cancer may occur through the loss of type II receptor (TβRII) expression. In this study, we investigated the expression pattern of TβRII in human lung cancer tissues by RT–PCR and Western blot analyses. We observed downregulation of TβRII in 30 out of 46 NSCLC samples (65%) by semiquantitative RT–PCR. Western blot analyses with tumour lysates showed reduced expression of TβRII in 77% cases. We also determined the effect of TβRII expression in lung adenocarcinoma cell line (VMRC-LCD) that is not responsive to TGF-β due to lack of TβRII expression. Stable expression of TβRII in these cells restored TGF-β-mediated effects including Smad2/3 and Smad4 complex formation, TGF-β-responsive reporter gene activation, inhibition of cell proliferation and increased apoptosis. Clones expressing TβRII showed reduced colony formation in soft-agarose assay and significantly reduced tumorigenicity in athymic nude mice. Therefore, these results suggest that reestablishment of TGF-β signalling in TβRII null cells by stable expression of TβRII can reverse malignant behaviour of cells and loss of TβRII expression may be involved in lung tumour progression.

Collaboration


Dive into the Pran K. Datta's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

R. Daniel Beauchamp

Vanderbilt University Medical Center

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Lin Jin

University of Alabama at Birmingham

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge