Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Pranav Chettri is active.

Publication


Featured researches published by Pranav Chettri.


PLOS Genetics | 2012

The genomes of the fungal plant pathogens Cladosporium fulvum and Dothistroma septosporum reveal adaptation to different hosts and lifestyles but also signatures of common ancestry.

Pierre J. G. M. de Wit; Ate van der Burgt; B. Ökmen; I. Stergiopoulos; Kamel A. Abd-Elsalam; Andrea Aerts; Ali H. Bahkali; H. Beenen; Pranav Chettri; Murray P. Cox; Erwin Datema; Ronald P. de Vries; Braham Dhillon; Austen R. D. Ganley; S.A. Griffiths; Yanan Guo; Richard C. Hamelin; Bernard Henrissat; M. Shahjahan Kabir; Mansoor Karimi Jashni; Gert H. J. Kema; Sylvia Klaubauf; Alla Lapidus; Anthony Levasseur; Erika Lindquist; Rahim Mehrabi; Robin A. Ohm; Timothy J. Owen; Asaf Salamov; Arne Schwelm

We sequenced and compared the genomes of the Dothideomycete fungal plant pathogens Cladosporium fulvum (Cfu) (syn. Passalora fulva) and Dothistroma septosporum (Dse) that are closely related phylogenetically, but have different lifestyles and hosts. Although both fungi grow extracellularly in close contact with host mesophyll cells, Cfu is a biotroph infecting tomato, while Dse is a hemibiotroph infecting pine. The genomes of these fungi have a similar set of genes (70% of gene content in both genomes are homologs), but differ significantly in size (Cfu >61.1-Mb; Dse 31.2-Mb), which is mainly due to the difference in repeat content (47.2% in Cfu versus 3.2% in Dse). Recent adaptation to different lifestyles and hosts is suggested by diverged sets of genes. Cfu contains an α-tomatinase gene that we predict might be required for detoxification of tomatine, while this gene is absent in Dse. Many genes encoding secreted proteins are unique to each species and the repeat-rich areas in Cfu are enriched for these species-specific genes. In contrast, conserved genes suggest common host ancestry. Homologs of Cfu effector genes, including Ecp2 and Avr4, are present in Dse and induce a Cf-Ecp2- and Cf-4-mediated hypersensitive response, respectively. Strikingly, genes involved in production of the toxin dothistromin, a likely virulence factor for Dse, are conserved in Cfu, but their expression differs markedly with essentially no expression by Cfu in planta. Likewise, Cfu has a carbohydrate-degrading enzyme catalog that is more similar to that of necrotrophs or hemibiotrophs and a larger pectinolytic gene arsenal than Dse, but many of these genes are not expressed in planta or are pseudogenized. Overall, comparison of their genomes suggests that these closely related plant pathogens had a common ancestral host but since adapted to different hosts and lifestyles by a combination of differentiated gene content, pseudogenization, and gene regulation.


Fungal Genetics and Biology | 2012

The veA gene of the pine needle pathogen Dothistroma septosporum regulates sporulation and secondary metabolism

Pranav Chettri; Ana M. Calvo; Jeffrey W. Cary; Sourabh Dhingra; Yanan Guo; Rebecca McDougal; Rosie E. Bradshaw

Fungi possess genetic systems to regulate the expression of genes involved in complex processes such as development and secondary metabolite biosynthesis. The product of the velvet gene veA, first identified and characterized in Aspergillus nidulans, is a key player in the regulation of both of these processes. Since its discovery and characterization in many Aspergillus species, VeA has been found to have similar functions in other fungi, including the Dothideomycete Mycosphaerella graminicola. Another Dothideomycete, Dothistroma septosporum, is a pine needle pathogen that produces dothistromin, a polyketide toxin very closely related to aflatoxin (AF) and sterigmatocystin (ST) synthesized by Aspergillus spp. Dothistromin is unusual in that, unlike most other secondary metabolites, it is produced mainly during the early exponential growth phase in culture. It was therefore of interest to determine whether the regulation of dothistromin production in D. septosporum differs from the regulation of AF/ST in Aspergillus spp. To begin to address this question, a veA ortholog was identified and its function analyzed in D. septosporum. Inactivation of the veA gene resulted in reduced dothistromin production and a corresponding decrease in expression of dothistromin biosynthetic genes. Expression of other putative secondary metabolite genes in D. septosporum such as polyketide synthases and non-ribosomal peptide synthases showed a range of different responses to loss of Ds-veA. Asexual sporulation was also significantly reduced in the mutants, accompanied by a reduction in the expression of a putative stuA regulatory gene. The mutants were, however, able to infect Pinus radiata seedlings and complete their life cycle under laboratory conditions. Overall this work suggests that D. septosporum has a veA ortholog that is involved in the control of both developmental and secondary metabolite biosynthetic pathways.


Fungal Genetics and Biology | 2013

Dothistromin genes at multiple separate loci are regulated by AflR

Pranav Chettri; Kenneth C. Ehrlich; Jeffrey W. Cary; Jérôme Collemare; Murray P. Cox; S.A. Griffiths; Malin A. Olson; Pierre J. G. M. de Wit; Rosie E. Bradshaw

In fungi, genes involved in the production of secondary metabolites are generally clustered at one location. There are some exceptions, such as genes required for synthesis of dothistromin, a toxin that is a chemical analog of the aflatoxin precursor versicolorin A and made by the pine needle pathogen Dothistroma septosporum. The availability of the D. septosporum genome sequence enabled identification of putative dothistromin genes, including an ortholog of the aflatoxin regulatory gene AflR, and revealed that most of the genes are spread over six separate regions (loci) on chromosome 12 (1.3 Mb). Here we show that levels of expression of the widely dispersed genes in D. septosporum are not correlated with gene location with respect to their distance from a telomere, but that AflR regulates them. The production of dothistromin by D. septosporum in which the AflR gene was knocked out (ΔDsAflR) was drastically reduced, but still detectable. This is in contrast to orthologous ΔAflR mutants in Aspergillus species that lack any aflatoxin production. Expression patterns in ΔDsAflR mutants helped to predict the complete set of genes involved in dothistromin production. This included a short-chain aryl alcohol dehydrogenase (NorB), which is located on chromosome 11 rather than chromosome 12, but was 24-fold down regulated in ΔDsAflR. An orthologous set of dothistromin genes, organized in a similar fragmented cluster arrangement to that seen in D. septosporum, was found in the closely related tomato pathogen Cladosporium fulvum even though this species does not produce dothistromin. In C. fulvum, pseudogenization of key biosynthetic genes explains the lack of dothistromin production. The fragmented arrangement of dothistromin genes provides an example of coordinated control of a dispersed set of secondary metabolite genes; it also provides an example where loss of dothistromin production might have allowed adaptation to a new pathogenic lifestyle.


Molecular Plant Pathology | 2016

Genome-wide gene expression dynamics of the fungal pathogen Dothistroma septosporum throughout its infection cycle of the gymnosperm host Pinus radiata.

Rosie E. Bradshaw; Yanan Guo; Andre Sim; M. Shahjahan Kabir; Pranav Chettri; Ibrahim K. Ozturk; Lukas Hunziker; Rebecca J. Ganley; Murray P. Cox

Summary We present genome‐wide gene expression patterns as a time series through the infection cycle of the fungal pine needle blight pathogen, Dothistroma septosporum, as it invades its gymnosperm host, Pinus radiata. We determined the molecular changes at three stages of the disease cycle: epiphytic/biotrophic (early), initial necrosis (mid) and mature sporulating lesion (late). Over 1.7 billion combined plant and fungal reads were sequenced to obtain 3.2 million fungal‐specific reads, which comprised as little as 0.1% of the sample reads early in infection. This enriched dataset shows that the initial biotrophic stage is characterized by the up‐regulation of genes encoding fungal cell wall‐modifying enzymes and signalling proteins. Later necrotrophic stages show the up‐regulation of genes for secondary metabolism, putative effectors, oxidoreductases, transporters and starch degradation. This in‐depth through‐time transcriptomic study provides our first snapshot of the gene expression dynamics that characterize infection by this fungal pathogen in its gymnosperm host.


Fungal Genetics and Biology | 2016

LaeA negatively regulates dothistromin production in the pine needle pathogen Dothistroma septosporum.

Pranav Chettri; Rosie E. Bradshaw

In filamentous fungi both pathway-specific and global regulators regulate genes involved in the biosynthesis of secondary metabolites. LaeA is a global regulator that was named for its mutant phenotype, loss of aflR expression, due to its effect on the aflatoxin-pathway regulator AflR in Aspergillus spp. The pine needle pathogen Dothistroma septosporum produces a polyketide virulence factor, dothistromin, that is chemically related to aflatoxin and whose pathway genes are also regulated by an ortholog of AflR. However, dothistromin biosynthesis is distinctive because it is switched on during early (rather than late) exponential growth phase and the genes are dispersed in six loci across one chromosome instead of being clustered. It was therefore of interest to determine whether the function of the global regulator LaeA is conserved in D. septosporum. To address this question, a LaeA ortholog (DsLaeA) was identified and its function analyzed in D. septosporum. In contrast to aflatoxin production in Aspergillus spp., deletion of DsLaeA resulted in enhanced dothistromin production and increased expression of the pathway regulatory gene DsAflR. Although expression of other putative secondary metabolite genes in D. septosporum showed a range of different responses to loss of DsLaeA function, thin layer chromatography revealed increased levels of a previously unknown metabolite in DsLaeA mutants. In addition, these mutants exhibited reduced asexual sporulation, germination and hydrophobicity. Our data suggest that although the developmental regulatory role of DsLaeA is conserved, its role in the regulation of secondary metabolism differs from that of LaeA in A. nidulans and appears to be species specific. This study provides a step towards understanding fundamental differences in regulation of clustered and fragmented groups of secondary metabolite genes that may shed light on understanding functional adaptation in secondary metabolism.


Fungal Biology | 2015

Regulation of the aflatoxin-like toxin dothistromin by AflJ.

Pranav Chettri; Kenneth C. Ehrlich; Rosie E. Bradshaw

Biosynthesis by Aspergillus parasiticus of aflatoxin, one of the most potent known naturally occurring carcinogens, requires the activity of two regulatory proteins, AflR and AflJ, which are encoded by divergently transcribed genes within the aflatoxin gene cluster. Although the Zn2Cys6 transcription factor, AflR, has been well-studied, the role of AflJ as a transcription regulatory factor is not well understood. An AflJ-like gene (DsAflJ) is also present in the genome of the pine needle pathogen Dothistroma septosporum and is similarly divergently transcribed from an AflR orthologue (DsAflR). These genes are involved in biosynthesis of dothistromin, a toxic virulence factor related to aflatoxin. DsAflJ mutants produced low levels of dothistromin (<25-fold less than wild-type); this was in contrast to earlier work with A. parasiticus AflJ mutants in which aflatoxin production was more severely impaired. As expected, complementation of D. septosporum mutants with an intact copy of the DsAflJ gene regained production of wild-type levels of dothistromin, although levels were not further increased by over-expression in multi-copy strains. However, heterologous AflJ genes from Aspergillus spp. were unable to complement DsAflJ mutants, suggesting that the proteins function differently in these species.


Fungal Genetics and Biology | 2017

Evolution of polyketide synthesis in a Dothideomycete forest pathogen

I. Kutay Ozturk; Pranav Chettri; Pierre-Yves Dupont; Irene Barnes; Rebecca McDougal; Geromy G. Moore; Andre Sim; Rosie E. Bradshaw

Fungal secondary metabolites have many important biological roles and some, like the toxic polyketide aflatoxin, have been intensively studied at the genetic level. Complete sets of polyketide synthase (PKS) genes can now be identified in fungal pathogens by whole genome sequencing and studied in order to predict the biosynthetic potential of those fungi. The pine needle pathogen Dothistroma septosporum is predicted to have only three functional PKS genes, a small number for a hemibiotrophic fungus. One of these genes is required for production of dothistromin, a polyketide virulence factor related to aflatoxin, whose biosynthetic genes are dispersed across one chromosome rather than being clustered. Here we evaluated the evolution of the other two genes, and their predicted gene clusters, using phylogenetic and population analyses. DsPks1 and its gene cluster are quite conserved amongst related fungi, whilst DsPks2 appears to be novel. The DsPks1 protein was predicted to be required for dihydroxynaphthalene (DHN) melanin biosynthesis but functional analysis of DsPks1 mutants showed that D. septosporum produced mainly dihydroxyphenylalanine (DOPA) melanin, which is produced by a PKS-independent pathway. Although the secondary metabolites made by these two PKS genes are not known, comparisons between strains of D. septosporum from different regions of the world revealed that both PKS core genes are under negative selection and we suggest they may have important cryptic roles in planta.


Molecular Microbiology | 2018

Chromatin-level regulation of the fragmented dothistromin gene cluster in the forest pathogen Dothistroma septosporum : Chromatin regulation of a fragmented cluster

Pranav Chettri; Pierre-Yves Dupont; Rosie E. Bradshaw

Genes required for fungal secondary metabolite production are usually clustered, co‐regulated and expressed in stationary growth phase. Chromatin modification has an important role in co‐regulation of secondary metabolite genes. The virulence factor dothistromin, a relative of aflatoxin, provided a unique opportunity to study chromatin level regulation in a highly fragmented gene cluster that is switched on during early exponential growth phase. We analysed three histone modification marks by ChIP‐qPCR and gene deletion in the pine pathogen Dothistroma septosporum to determine their effects on dothistromin gene expression across a time course and at different loci of the dispersed gene cluster. Changes in gene expression and dothistromin production were associated with changes in histone marks, with higher acetylation (H3K9ac) and lower methylation (H3K9me3, H3K27me3) during early exponential phase at the onset of dothistromin production. But while H3K27me3 directly influenced dothistromin genes dispersed across chromosome 12, effects of H3K9 acetylation and methylation were orchestrated mainly through a centrally located pathway regulator gene DsAflR. These results revealed that secondary metabolite production can be controlled at the chromatin‐level despite the genes being dispersed. They also suggest that patterns of chromatin modification are important in adaptation of a virulence factor for a specific role in planta.


New Phytologist | 2013

Fragmentation of an aflatoxin-like gene cluster in a forest pathogen.

Rosie E. Bradshaw; Jason C. Slot; Geromy G. Moore; Pranav Chettri; Pierre J. G. M. de Wit; Kenneth C. Ehrlich; Austen R. D. Ganley; Malin A. Olson; Antonis Rokas; Ignazio Carbone; Murray P. Cox


New Zealand Plant Protection | 2016

Molecular markers for quantification of bioactive fungal strains associated with Pinus radiata

K. Mellow; Pranav Chettri; S. Kabir; Rebecca McDougal; Murray P. Cox; Alison Stewart; Claudia Lange; Johanna M. Steyaert; Rosie E. Bradshaw

Collaboration


Dive into the Pranav Chettri's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jérôme Collemare

Wageningen University and Research Centre

View shared research outputs
Top Co-Authors

Avatar

Kenneth C. Ehrlich

United States Department of Agriculture

View shared research outputs
Top Co-Authors

Avatar

B. Ökmen

Wageningen University and Research Centre

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jeffrey W. Cary

United States Department of Agriculture

View shared research outputs
Researchain Logo
Decentralizing Knowledge