Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Pranav Soman is active.

Publication


Featured researches published by Pranav Soman.


Biomaterials | 2012

Microfabrication of complex porous tissue engineering scaffolds using 3D projection stereolithography.

Robert Gauvin; Ying Chieh Chen; Jin Woo Lee; Pranav Soman; Pinar Zorlutuna; Jason W. Nichol; Hojae Bae; Shaochen Chen; Ali Khademhosseini

The success of tissue engineering will rely on the ability to generate complex, cell seeded three-dimensional (3D) structures. Therefore, methods that can be used to precisely engineer the architecture and topography of scaffolding materials will represent a critical aspect of functional tissue engineering. Previous approaches for 3D scaffold fabrication based on top-down and process driven methods are often not adequate to produce complex structures due to the lack of control on scaffold architecture, porosity, and cellular interactions. The proposed projection stereolithography (PSL) platform can be used to design intricate 3D tissue scaffolds that can be engineered to mimic the microarchitecture of tissues, based on computer aided design (CAD). The PSL system was developed, programmed and optimized to fabricate 3D scaffolds using gelatin methacrylate (GelMA). Variation of the structure and prepolymer concentration enabled tailoring the mechanical properties of the scaffolds. A dynamic cell seeding method was utilized to improve the coverage of the scaffold throughout its thickness. The results demonstrated that the interconnectivity of pores allowed for uniform human umbilical vein endothelial cells (HUVECs) distribution and proliferation in the scaffolds, leading to high cell density and confluency at the end of the culture period. Moreover, immunohistochemistry results showed that cells seeded on the scaffold maintained their endothelial phenotype, demonstrating the biological functionality of the microfabricated GelMA scaffolds.


Advanced Materials | 2012

Rapid fabrication of complex 3D extracellular microenvironments by dynamic optical projection stereolithography.

A. Ping Zhang; Xin Qu; Pranav Soman; Kolin C. Hribar; Jin W. Lee; Shaochen Chen; Sailing He

The topographic features of the extracelluar matrix (ECM) lay the foundation for cellular behavior. A novel biofabrication method using a digital-mirror device (DMD), called dynamic optical projection stereolithography (DOPsL) is demonstrated. This robust and versatile platform can generate complex biomimetic scaffolds within seconds. Such 3D scaffolds have promising potentials for studying cell interactions with microenvironments in vitro and in vivo.


Biotechnology and Bioengineering | 2013

Digital microfabrication of user-defined 3D microstructures in cell-laden hydrogels

Pranav Soman; Peter H. Chung; A. Ping Zhang; Shaochen Chen

Complex 3D interfacial arrangements of cells are found in several in vivo biosystems such as blood vasculature, renal glomeruli, and intestinal villi. Current tissue engineering techniques fail to develop suitable 3D microenvironments to evaluate the concurrent effects of complex topography and cell encapsulation. There is a need to develop new fabrication approaches that control cell density and distribution within complex 3D features. In this work, we present a dynamic projection printing process that allows rapid construction of complex 3D structures using custom‐defined computer‐aided‐design (CAD) files. Gelatin‐methacrylate (GelMA) constructs featuring user‐defined spiral, pyramid, flower, and dome micro‐geometries were fabricated with and without encapsulated cells. Encapsulated cells demonstrate good cell viability across all geometries both on the scaffold surface and internal to the structures. Cells respond to geometric cues individually as well as collectively throughout the larger‐scale patterns. Time‐lapse observations also reveal the dynamic nature of mechanical interactions between cells and micro‐geometry. When compared to conventional cell‐seeding, cell encapsulation within complex 3D patterned scaffolds provides long‐term control over proliferation, cell morphology, and geometric guidance. Overall, this biofabrication technique offers a flexible platform to evaluate cell interactions with complex 3D micro‐features, with the ability to scale‐up towards high‐throughput screening platforms. Biotechnol. Bioeng. 2013;110: 3038–3047.


Biomaterials | 2012

Cancer cell migration within 3D layer-by-layer microfabricated photocrosslinked PEG scaffolds with tunable stiffness.

Pranav Soman; Jonathan A. Kelber; Jin Woo Lee; Tracy Wright; Kenneth S. Vecchio; Richard L. Klemke; Shaochen Chen

Our current understanding of 3-dimensional (3D) cell migration is primarily based on results from fibrous scaffolds with randomly organized internal architecture. Manipulations that change the stiffness of these 3D scaffolds often alter other matrix parameters that can modulate cell motility independently or synergistically, making observations less predictive of how cells behave when migrating in 3D. In order to decouple microstructural influences and stiffness effects, we have designed and fabricated 3D polyethylene glycol (PEG) scaffolds that permit orthogonal tuning of both elastic moduli and microstructure. Scaffolds with log-pile architectures were used to compare the 3D migration properties of normal breast epithelial cells (HMLE) and Twist-transformed cells (HMLET). Our results indicate that the nature of cell migration is significantly impacted by the ability of cells to migrate in the third dimension. 2D ECM-coated PEG substrates revealed no statistically significant difference in cell migration between HMLE and HMLET cells among substrates of different stiffness. However, when cells were allowed to move along the third dimension, substantial differences were observed for cell displacement, velocity and path straightness parameters. Furthermore, these differences were sensitive to both substrate stiffness and the presence of the Twist oncogene. Importantly, these 3D modes of migration provide insight into the potential for oncogene-transformed cells to migrate within and colonize tissues of varying stiffness.


Acta Biomaterialia | 2013

Digital micromirror device projection printing system for meniscus tissue engineering.

Shawn P. Grogan; Peter H. Chung; Pranav Soman; Peter C. Chen; Martin Lotz; Shaochen Chen; Darryl D. D'Lima

Meniscus degeneration due to age or injury can lead to osteoarthritis. Although promising, current cell-based approaches show limited success. Here we present three-dimensional methacrylated gelatin (GelMA) scaffolds patterned via projection stereolithography to emulate the circumferential alignment of cells in native meniscus tissue. Cultured human avascular zone meniscus cells from normal meniscus were seeded on the scaffolds. Cell viability was monitored, and new tissue formation was assessed by gene expression analysis and histology after 2weeks in serum-free culture with transforming growth factor β1 (10ngml(-1)). Light, confocal and scanning electron microscopy were used to observe cell-GelMA interactions. Tensile mechanical testing was performed on unseeded, fresh scaffolds and 2-week-old cell-seeded and unseeded scaffolds. 2-week-old cell-GelMA constructs were implanted into surgically created meniscus defects in an explant organ culture model. No cytotoxic effects were observed 3weeks after implantation, and cells grew and aligned to the patterned GelMA strands. Gene expression profiles and histology indicated promotion of a fibrocartilage-like meniscus phenotype, and scaffold integration with repair tissue was observed in the explant model. We show that micropatterned GelMA scaffolds are non-toxic, produce organized cellular alignment, and promote meniscus-like tissue formation. Prefabrication of GelMA scaffolds with architectures mimicking the meniscus collagen bundle organization shows promise for meniscal repair. Furthermore, the technique presented may be scaled up to repair larger defects.


Biomaterials Science | 2014

Structural reinforcement of cell-laden hydrogels with microfabricated three dimensional scaffolds

Chaenyung Cha; Pranav Soman; Wei Zhu; Mehdi Nikkhah; Gulden Camci-Unal; Shaochen Chen; Ali Khademhosseini

Hydrogels commonly used in tissue engineering are mechanically soft, thus often display structural weakness. Herein, we introduce a strategy for enhancing the structural integrity and fracture toughness of cell-laden hydrogels by incorporating a three-dimensional (3D) microfabricated scaffold as a structural element. A digital micromirror device projection printing (DMD-PP) system, a rapid prototyping technology which employs a layer-by-layer stereolithographic approach, was utilized to efficiently fabricate 3D scaffolds made from photocrosslinkable poly(ethylene glycol) diacrylate (PEGDA). The scaffold was incorporated into a photocrosslinkable gelatin hydrogel by placing it in a pre-gel solution, and inducing in situ hydrogel formation. The resulting scaffold-reinforced hydrogels demonstrated significant increase in ultimate stress and provided structural support for weak hydrogels. In addition, the scaffold did not affect the rigidity of hydrogels, as it was not involved in the crosslinking reaction to form the hydrogel. Therefore, the presented approach could avoid inadvertent and undesired changes in the hydrogel rigidity which is a known regulator of cellular activities. Furthermore, the biocompatibility of scaffold-reinforced hydrogels was confirmed by evaluating the viability and proliferation of encapsulated fibroblasts. Overall, the strategy of incorporating 3D scaffolds into hydrogels as structural reinforcements presented in this study will be highly useful for enhancing the mechanical toughness of hydrogels for various tissue engineering applications.


Biomedical Microdevices | 2012

Three-dimensional scaffolding to investigate neuronal derivatives of human embryonic stem cells.

Pranav Soman; Brian T. D. Tobe; Jin Woo Lee; Alicia Winquist; Ilyas Singec; Kenneth S. Vecchio; Evan Y. Snyder; Shaochen Chen

Access to unlimited numbers of live human neurons derived from stem cells offers unique opportunities for in vitro modeling of neural development, disease-related cellular phenotypes, and drug testing and discovery. However, to develop informative cellular in vitro assays, it is important to consider the relevant in vivo environment of neural tissues. Biomimetic 3D scaffolds are tools to culture human neurons under defined mechanical and physico-chemical properties providing an interconnected porous structure that may potentially enable a higher or more complex organization than traditional two-dimensional monolayer conditions. It is known that even minor variations in the internal geometry and mechanical properties of 3D scaffolds can impact cell behavior including survival, growth, and cell fate choice. In this report, we describe the design and engineering of 3D synthetic polyethylene glycol (PEG)-based and biodegradable gelatin-based scaffolds generated by a free form fabrication technique with precise internal geometry and elastic stiffnesses. We show that human neurons, derived from human embryonic stem (hESC) cells, are able to adhere to these scaffolds and form organoid structures that extend in three dimensions as demonstrated by confocal and electron microscopy. Future refinements of scaffold structure, size and surface chemistries may facilitate long term experiments and designing clinically applicable bioassays.


Advanced Functional Materials | 2013

Tuning the Poisson's Ratio of Biomaterials for Investigating Cellular Response

Wande Zhang; Pranav Soman; Kyle Meggs; Xin Qu; Shaochen Chen

Cells sense and respond to mechanical forces, regardless of whether the source is from a normal tissue matrix, an adjacent cell or a synthetic substrate. In recent years, cell response to surface rigidity has been extensively studied by modulating the elastic modulus of poly(ethylene glycol) (PEG)-based hydrogels. In the context of biomaterials, Poissons ratio, another fundamental material property parameter has not been explored, primarily because of challenges involved in tuning the Poissons ratio in biological scaffolds. Two-photon polymerization is used to fabricate suspended web structures that exhibit positive and negative Poissons ratio (NPR), based on analytical models. NPR webs demonstrate biaxial expansion/compression behavior, as one or multiple cells apply local forces and move the structures. Unusual cell division on NPR structures is also demonstrated. This methodology can be used to tune the Poissons ratio of several photocurable biomaterials and could have potential implications in the field of mechanobiology.


Colloids and Surfaces B: Biointerfaces | 2009

AFM measurements of interactions between the platelet integrin receptor GPIIbIIIa and fibrinogen.

Aashiish Agnihotri; Pranav Soman; Christopher A. Siedlecki

Binding of receptor proteins on circulating platelets to fibrinogen adsorbed on a biomaterial surface is a critical event in the blood-material interactions and surface-induced thrombogenesis. In this work, the interactions between purified platelet membrane integrin GPIIbIIIa (alpha(IIb)beta(3)) and fibrinogen on model hydrophilic and hydrophobic surfaces were characterized by measuring ligand-receptor debonding forces by atomic force microscopy (AFM). Force profiles between AFM probes functionalized with platelet integrins and fibrinogen on these substrates showed multiple rupture events over large distances on both surfaces. On the hydrophobic surface, the rupture length range was 20-200 nm, whereas on the hydrophilic surface, the rupture length range was 20-400 nm. Rupture events in the force curves were found to arise from non-specific protein-protein interactions, mechanical denaturation of fibrinogen domains, as well as the specific ligand-receptor interactions between integrins and fibrinogen. Analysis of the distributions of the debonding forces was used to estimate the strength of single integrin-fibrinogen pair at different loading rates. For loading rates of 10-60 nN/s, the debonding strength of a single integrin-fibrinogen pair was found to be in the range of 50-80 pN and was independent of the underlying substrate. Results suggest that once the active platelet binding epitope in fibrinogen becomes exposed by surface adsorption, binding of the platelet membrane integrin receptor will be similar regardless of the material surface properties.


Langmuir | 2008

Measuring the Time-Dependent Functional Activity of Adsorbed Fibrinogen by Atomic Force Microscopy

Pranav Soman; Zachary Rice; Christopher A. Siedlecki

In this work, we measured time-dependent functional changes in adsorbed fibrinogen by measuring antigen-antibody debonding forces with atomic force microscopy (AFM). AFM probes were functionalized with monoclonal antibodies recognizing fibrinogen gamma 392-411, which includes the platelet binding dodecapeptide region. These probes were used to collect force measurements between the antibody and fibrinogen on mica substrates and the probability of antigen recognition was calculated. Statistical analysis showed that the probability of antibody-antigen recognition peaked at approximately 45 min postadsorption and decreased with increasing residence time. Macroscale platelet adhesion measurements on these mica substrates were determined to be greatest at fibrinogen residence times of approximately 45 min, which correlated well with the functional activity of adsorbed fibrinogen as measured by the modified AFM probes. These results demonstrate the utility of this approach for measuring protein function at or near the molecular scale and offers new opportunities for improved insights into the molecular basis for the biological response to biomaterials.

Collaboration


Dive into the Pranav Soman's collaboration.

Top Co-Authors

Avatar

Shaochen Chen

University of California

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jin Woo Lee

University of California

View shared research outputs
Top Co-Authors

Avatar

Li-Chong Xu

Pennsylvania State University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Zachary Rice

Pennsylvania State University

View shared research outputs
Top Co-Authors

Avatar

Aashiish Agnihotri

Pennsylvania State University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Peter H. Chung

University of California

View shared research outputs
Researchain Logo
Decentralizing Knowledge