Praneeth D. Edirisinghe
University of Illinois at Chicago
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Praneeth D. Edirisinghe.
Bioorganic & Medicinal Chemistry | 2010
Hye Yeong Kim; Johann Sohn; Gihani T. Wijewickrama; Praneeth D. Edirisinghe; Teshome Gherezghiher; Madhubani Hemachandra; Pei Yi Lu; R. Esala P. Chandrasena; Mary Ellen Molloy; Debra A. Tonetti; Gregory R. J. Thatcher
Cyclodextrin (CD) is a well known drug carrier and excipient for enhancing aqueous solubility. CDs themselves are anticipated to have low membrane permeability because of relatively high hydrophilicity and molecular weight. CD derivatization with 17-beta estradiol (E(2)) was explored extensively using a number of different click chemistries and the cell membrane permeability of synthetic CD-E(2) conjugate was explored by cell reporter assays and confocal fluorescence microscopy. In simile with reported dendrimer-E(2) conjugates, CD-E(2) was found to be a stable, extranuclear receptor selective estrogen that penetrated into the cytoplasm.
Chemical Research in Toxicology | 2008
R. Esala P. Chandrasena; Praneeth D. Edirisinghe; Judy L. Bolton; Gregory R. J. Thatcher
Estrogen exposure through early menarche, late menopause, and hormone replacement therapy increases the risk factor for hormone-dependent cancers. Although the molecular mechanisms are not completely established, DNA damage by quinone electrophilic reactive intermediates, derived from estrogen oxidative metabolism, is strongly implicated. A current hypothesis has 4-hydroxyestrone-o-quinone (4-OQE) acting as the proximal estrogen carcinogen, forming depurinating DNA adducts via Michael addition. One aspect of this hypothesis posits a key role for NAD(P)H-dependent quinone oxidoreductase (NQO1) in the reduction of 4-OQE and protection against estrogen carcinogenesis, despite two reports that 4-OQE is not a substrate for NQO1. 4-OQE is rapidly and efficiently trapped by GSH, allowing measurement of NADPH-dependent reduction of 4-OQE in the presence and absence of NQO1. 4-OQE was observed to be a substrate for NQO1, but the acceleration of NADPH-dependent reduction by NQO1 over the nonenzymic reaction is less than 10-fold and at more relevant nanomolar concentrations of substrate is less than 2-fold. An alternative detoxifying enzyme, glutathione-S-transferase, was observed to be a target for 4-OQE, rapidly undergoing covalent modification. These results indicate that a key role for NQO1 and GST in direct detoxification of 4-hydroxy-estrogen quinones is problematic.
Molecular Pharmacology | 2008
Ghenet K. Hagos; Samer O. Abdul-Hay; Johann Sohn; Praneeth D. Edirisinghe; R. Esala P. Chandrasena; Zhiqiang Wang; Qian Li; Gregory R. J. Thatcher
Nonsteroidal anti-inflammatory drugs (NSAIDs) have shown promise in colorectal cancer (CRC), but they are compromised by gastrotoxicity. NO-NSAIDs are hybrid nitrates conjugated to an NSAID designed to exploit the gastroprotective properties of NO bioactivity. The NO chimera ethyl 2-((2,3-bis(nitrooxy)propyl)disulfanyl)benzoate (GT-094), a novel nitrate containing an NSAID and disulfide pharmacophores, is effective in vivo in rat models of CRC and is a lead compound for design of agents of use in CRC. Preferred chemopreventive agents possess 1) antiproliferative and 2) anti-inflammatory actions and 3) the ability to induce cytoprotective phase 2 enzymes. To determine the contribution of each pharmacophore to the biological activity of GT-094, these three biological activities were studied in vitro in compounds that deconstructed the structural elements of the lead GT-094. The anti-inflammatory and antiproliferative actions of GT-094 in vivo were recapitulated in vitro, and GT-094 was seen to induce phase 2 enzymes via the antioxidant responsive element. In the variety of colon, macrophage-like, and liver cell lines studied, the evidence from structure-activity relationships was that the disulfide structural element of GT-094 is the dominant contributor in vitro to the anti-inflammatory activity, antiproliferation, and enzyme induction. The results provide a direction for lead compound refinement. The evidence for a contribution from the NO mimetic activity of nitrates in vitro was equivocal, and combinations of nitrates with acetylsalicylic acid were inactive.
Journal of Neurochemistry | 2009
Samer O. Abdul-Hay; Praneeth D. Edirisinghe; Gregory R. J. Thatcher
Gamma‐secretase modulators (GSMs) include selected non‐steroidal anti‐inflammatory drugs such as flurbiprofen that selectively lowers the neurotoxic amyloid‐β peptide Aβ1–42. GSMs are attractive targets for Alzheimer’s disease, in contrast to ‘inverse GSMs,’ such as fenofibrate, which selectively increase the level of Aβ1–42. A methodology for screening of Aβ modulating drugs was developed utilizing an Aβ‐producing neuroblastoma cell line stably transfected with mutant human amyloid precursor protein, immunoprecipitation of Aβ peptides, and mass spectroscopic quantitation of Aβ1–37/Aβ1–38/Aβ1–40/Aβ1–42 using an Aβ internal standard. The unexpected conclusion of this work was that in this system, drug effects are independent of γ‐secretase. The methodology recapitulated reported results for modulation of Aβ by GSMs. However, control experiments in which exogenous Aβ1–40/Aβ1–42 was added (i) to drug‐treated wild‐type cells or (ii) to conditioned media from these wild‐type cells, gave comparable patterns of Aβ modulation. These results, suggesting that drugs modulate the ability of cell‐derived factors to degrade Aβ, was interrogated by adding protease inhibitors and performing molecular weight cut‐off fractionation. The results confirmed that modulation of Aβ1–40/Aβ1–42 was mediated by selective proteolysis. Treatment of N2a cells with flurbiprofen or fenofibric acid selectively enhanced Aβ1–42 clearance by extracellular proteolysis; treatment with HCT‐1026 or fenofibrate (esters of flurbiprofen and fenobric acid) inhibited clearance of Aβ1–40 and Aβ1–42.
Analytical Chemistry | 2012
M T Melvin Blaze; Artem Akhmetov; Berdan Aydin; Praneeth D. Edirisinghe; Gulsah Uygur; Luke Hanley
The potential of laser desorption postionization mass spectrometry (LDPI-MS) imaging for small molecule quantification is demonstrated here. The N-methylpiperazine acetamide (MPA) of ampicillin was adsorbed into polyelectrolyte multilayer surface coatings composed of chitosan and alginate, both high molecular weight biopolymers. These MPA-ampicillin spiked multilayers were then shown to inhibit the growth of Enterococcus faecalis biofilms that play a role in early stage infection of implanted medical devices. Finally, LDPI-MS imaging using 7.87 eV single-photon ionization was found to detect MPA-ampicillin within the multilayers before and after biofilm growth with limits of quantification and detection of 0.6 and 0.3 nmol, respectively. The capabilities of LDPI-MS imaging for small molecule quantification are compared to those of MALDI-MS. Furthermore, these results indicate that 7.87 eV LDPI-MS imaging should be applicable to quantification of a range of small molecular species on a variety of complex organic and biological surfaces. Finally, while MS imaging for quantification was demonstrated here using LDPI, it is a generally useful strategy that can be applied to other methods.
Bioconjugate Chemistry | 2009
Bolan Yu; Zhihui Qin; Gihani T. Wijewickrama; Praneeth D. Edirisinghe; Judy L. Bolton; Gregory R. J. Thatcher
Conjugation of biotin and fluorophore tags is useful for assaying covalent protein modification. Oxidative bioactivation of selective estrogen receptor modulators (SERMs) yields reactive quinoid electrophiles that covalently modify proteins, and bioactivation is associated with carcinogenic and chemopreventive effects. Identification of the protein targets of electrophilic metabolites is of general importance for xenobiotics. Four methodologies using SERM derivatized biotin/fluorophore tags were compared for purification and quantification: (1) covert oxidatively activated tags (COATags; SERM conjugated to biotin); (2) dansylTags (SERM conjugated to fluorophore); and azidoTags (SERM azide derivatives) in a two-step conjugation to biotin, using either (3) Staudinger ligation or (4) click chemistry. All synthetic derivatives retained the estrogen receptor ligand characteristics of the parent SERMs. Model proteins with bioactivation by tyrosinase in buffer or cell lysates and liver proteins with in situ bioactivation in rat primary hepatocytes were studied by immunoassay and fluorescence. Comparison showed that the azidoTag/Staudinger method was sensitive but nonspecific, the azidoTag/click methodology had low sensitivity, and the dansylTag methodology failed to detect modified proteins in hepatocytes. The COATag methodology was judged superior, detecting 5 ng of modified protein in vitro and identifying protein targets in hepatocytes. In metabolism studies in rat liver microsomes, the azide group was metabolically labile, which was a contributing factor in not selecting the azidoTag methodology in the oxidative environments required for bioactivation. For study of the protein targets of electrophilic metabolites formed by in situ oxidative bioactivation, the COATag is both sensitive and specific and does not appear to suffer from poor cell permeability.
Endocrinology | 2010
Irida Kastrati; Praneeth D. Edirisinghe; Gihani T. Wijewickrama; Gregory R. J. Thatcher
Estrogen action, via both nuclear and extranuclear estrogen receptors (ERs), induces a variety of cellular signals that are prosurvival or proliferative, whereas nitric oxide (NO) can inhibit apoptosis via caspase S-nitrosylation and via activation of soluble guanylyl cyclase to produce cGMP. The action of 17β-estradiol (E(2)) at ER is known to elicit NO signaling via activation of NO synthase (NOS) in many tissues. The MCF-10A nontumorigenic, mammary epithelial cell line is genetically stable and insensitive to estrogenic proliferation. In this cell line, estrogens or NOS inhibitors alone had no significant effect, whereas in combination, apoptosis was induced rapidly in the absence of serum; the presence of inducible NOS was confirmed by proteomic analysis. The application of pharmacological agents determined that apoptosis was dependent upon NO/cGMP signaling via cyclic GMP (cGMP)-dependent protein kinase and could be replicated by inhibition of the phosphatidylinositol 3 kinase/serine-threonine kinase pathway prior to addition of E(2). Apoptosis was confirmed by nuclear staining and increased caspase-3 activity in E(2) + NOS inhibitor-treated cells. Apoptosis was partially inhibited by a pure ER antagonist and replicated by agonists selective for extranuclear ER. Cells were rescued from E(2)-induced apoptosis after NOS blockade, by NO-donors and cGMP pathway agonists; preincubation with NO donors was required. The NOS and ER status of breast cancer tissues is significant in etiology, prognosis, and therapy. In this study, apoptosis of preneoplastic mammary epithelial cells was triggered by estrogens via a rapid, extranuclear ER-mediated response, after removal of an antiapoptotic NO/cGMP/cGMP-dependent protein kinase signal.
PLOS ONE | 2011
Irida Kastrati; Praneeth D. Edirisinghe; L-P-Madhubani P. Hemachandra; Esala R. Chandrasena; Jaewoo Choi; Yueting Wang; Judy L. Bolton; Gregory R. J. Thatcher
There is association between exposure to estrogens and the development and progression of hormone-dependent gynecological cancers. Chemical carcinogenesis by catechol estrogens derived from oxidative metabolism is thought to contribute to breast cancer, yet exact mechanisms remain elusive. Malignant transformation was studied in MCF-10A human mammary epithelial cells, since estrogens are not proliferative in this cell line. The human and equine estrogen components of estrogen replacement therapy (ERT) and their catechol metabolites were studied, along with the influence of co-administration of selective estrogen receptor modulators (SERMs), raloxifene and desmethyl-arzoxifene (DMA), and histone deacetylase inhibitors. Transformation was induced by human estrogens, and selectively by the 4-OH catechol metabolite, and to a lesser extent by an equine estrogen metabolite. The observed estrogen-induced upregulation of CYP450 1B1 in estrogen receptor negative MCF-10A cells, was compatible with a causal role for 4-OH catechol estrogens, as was attenuated transformation by CYP450 inhibitors. Estrogen-induced malignant transformation was blocked by SERMs correlating with a reduction in formation of nucleobase catechol estrogen (NCE) adducts and formation of 8-oxo-dG. NCE adducts can be formed consequent to DNA abasic site formation, but NCE adducts were also observed on incubation of estrogen quinones with free nucleotides. These results suggest that NCE adducts may be a biomarker for cellular electrophilic stress, which together with 8-oxo-dG as a biomarker of oxidative stress correlate with malignant transformation induced by estrogen oxidative metabolites. The observed attenuation of transformation by SERMs correlated with these biomarkers and may also be of clinical significance in breast cancer chemoprevention.
Chemical Research in Toxicology | 2009
Zhican Wang; Praneeth D. Edirisinghe; Johann Sohn; Zhihui Qin; Nicholas E. Geacintov; Gregory R. J. Thatcher; Judy L. Bolton
Estrogen-DNA adducts are potential biomarkers for assessing cancer risk and progression in estrogen-dependent cancer. 4-Hydroxyequilenin (4-OHEN), the major catechol metabolite of equine estrogens present in hormone replacement therapy formulations, autoxidizes to a reactive o-quinone that subsequently causes DNA damage. The formation of stable stereoisomeric cyclic 4-OHEN-DNA adducts has been reported in vitro and in vivo, but their removal by DNA repair processes in cells has not been determined. Such studies have been hampered by low yields of cyclic adducts and poor reproducibility when treating cells in culture with 4-OHEN. These problems are attributed in part to the instability of 4-OHEN in aerobic, aqueous media. We show herein that low yields and reproducibility can be overcome by 4-OHEN diacetate as a novel, cell-permeable 4-OHEN precursor, in combination with a sensitive LC-MS/MS method developed for detecting adducts in human breast cancer cells. This method involves isolation of cellular DNA, DNA digestion to deoxynucleosides, followed by the addition of an isotope-labeled internal standard (4-OHEN-(15)N(5)-dG adduct) prior to analysis by LC-MS/MS. A concentration-dependent increase in adduct levels was observed in MCF-7 cells after exposure to 4-OHEN diacetate. The chemical stabilities of the adducts were also investigated to confirm that adducts were stable under assay conditions. In conclusion, this newly developed LC-MS/MS method allows detection and relative quantification of 4-OHEN-DNA adducts in human breast cancer cells, which could be adapted for adduct detection in human samples.
ACS Chemical Biology | 2010
Vaishali Sinha; Gihani T. Wijewickrama; R. Esala P. Chandrasena; Hua Xu; Praneeth D. Edirisinghe; Isaac T. Schiefer; Gregory R. J. Thatcher