Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Pranesh Kumar is active.

Publication


Featured researches published by Pranesh Kumar.


Journal of Ethnopharmacology | 2016

Isolated flavonoids from Ficus racemosa stem bark possess antidiabetic, hypolipidemic and protective effects in albino Wistar rats

Amit K Keshari; Ghanendra Kumar; Priya Singh Kushwaha; Monika Bhardwaj; Pranesh Kumar; Atul Rawat; Dinesh Kumar; Anand Prakash; Balaram Ghosh; Sudipta Saha

ETHNOPHARMACOLOGICAL RELEVANCE Ficus racemosa (FR) has been used for thousands of years in Ayurvedic system of medicine in India and is closely associated with prevention, treatment and cure of various human ailments like obesity and diabetes. It is popularly known as gular. A vast and wide range of chemical compounds like polyphenols, friedelane-type triterpenes, norfriedelane type triterpene, eudesmane-type sesquiterpene including various glycosides had been isolated from this plant. However, no detail studies related to isolation of flavonoids has been reported previously with their antidiabetic, hypolipidemic and toxicological consequences. AIM OF THE STUDY The present study was undertaken to evaluate antidiabetic, hypolipidemic and toxicological assessments of flavonoids isolated from Ficus racemosa (FR) stem bark. MATERIALS AND METHODS We isolated four flavonoids from stem bark of FR and structures were confirmed by Infrared spectroscopy (IR), Nuclear Magnetic Resonance (NMR) (both 1D and 2D), mass spectroscopy (MS). Later, these flavonoids were administered to streptozotocin (STZ) rats once in a day for a period of seven days at 100mg/kg dose. We measured blood glucose level and body weight changes at different days (1st, 3rd, 5th and 7th days). Serum lipid profiles were also estimated to investigate the hypolipidemic potential of flavonoids in the similar experiment. Various oxidative stress parameters in pancreas and liver and hepatic biomarker enzymes in plasma were also determined to investigate the toxicity potential of isolated flavonoids. Finally, we performed docking studies to find out the mechanism of action. RESULTS Our results collectively suggested that four flavonoids reduced blood glucose level and restored body weight, signifying antidiabetic action. There were reduction of other lipid profile parameters and increase of high density lipoprotein (HDL) during administration of flavonoids, also signifying hypolipidemic action. Various oxidative stress biomarkers and hepatic enzymes levels were also normalized with respect to diabetic control at the same time. Docking studies revealed that isolated flavonoids showed their antidiabetic potential via binding to PPARγ and GLUT1 receptors. CONCLUSION The isolated four flavonoids demonstrated good antidiabetic, hypolipidemic and antioxidant properties in STZ diabetic rats which supported the use of FR stem bark as useful supplementary drug for future antidiabetic therapy.


Natural Product Research | 2016

Antiproliferative effect of isolated isoquinoline alkaloid from Mucuna pruriens seeds in hepatic carcinoma cells

Pranesh Kumar; Atul Rawat; Amit K Keshari; Ashok K. Singh; Siddhartha Maity; Arnab De; Amalesh Samanta; Sudipta Saha

The present study was undertaken to investigate the antiproliferative action of isolated M1 (6,7-dimethoxy-1,2,3,4-tetrahydroisoquinoline-3-carboxylic acid) from Mucuna pruriens seeds using human hepatic carcinoma cell line (Huh-7 cells). Initially, docking studies was performed to find out the binding affinities of M1 to caspase-3 and 8 enzymes. Later, cytotoxic action of M1 was measured by cell growth inhibition (MTT), followed by caspase-3 and 8 enzymes assay colorimetrically. Our results collectively suggested that M1 had strong binding affinity to caspase-8 in molecular modelling. M1 possessed antiproliferative activity on Huh-7 cells (EC50 = 13.97 μM) and also inhibited the action of caspase-8 enzyme, signified process of apoptosis. M1 was active against Huh-7 cells that may be useful for future hepatic cancer treatment.


International Journal of Nanomedicine | 2018

Poly(lactic- co -glycolic acid)-loaded nanoparticles of betulinic acid for improved treatment of hepatic cancer: characterization, in vitro and in vivo evaluations

Pranesh Kumar; Ashok K. Singh; Vinit Raj; Amit Rai; Amit K Keshari; Dinesh Kumar; Biswanath Maity; Anand Prakash; Sabyasachi Maiti; Sudipta Saha

Purpose The application of betulinic acid (B), a potent antineoplastic agent, is limited due to poor bioavailability, short plasma half-life and inappropriate tissue distribution. Thus, we aimed to prepare novel 50:50 poly(lactic-co-glycolic acid) (PLGA)-loaded B nanoparticles (BNP) and to compare its anti-hepatocellular carcinoma (HCC) activity with parent B. Methods BNP were synthesized and characterized using different methods such as scanning electron microscopy (SEM), fourier-transform infrared (FTIR) spectrometry and particle size analyses. Particle size of BNP was optimized through the application of the stabilizer, polyvinyl alcohol (PVA). The anti-HCC response was evaluated through in vitro cell line study using Hep-G2 cells, confocal microscopy, in vivo oral pharmacokinetics and animal studies. Further, quantitative reverse transcription polymerase chain reaction (qRT-PCR) analysis was conducted to observe the changes in the expression of specific genes. Results Particle size of BNP was optimized through the application of the stabilizer, polyvinyl alcohol. Physicochemical characterization exhibited particle size of 257.1 nm with zeta potential −0.170 mV (optimized batch B, BNP). SEM and FTIR analyses of BNP showed that cylindrical particles of B converted to spherical particles in BNP and there were no interaction between B and used polymers. The release study of optimized BNP was highest (≥80%) than any other formulation. Later, in vitro cell culture analysis using Hep-G2 cells and confocal microscopy studies revealed that BNP had the highest inhibition and penetration properties than parent B. Oral pharmacokinetics studies using albino Wistar rats at single 100 mg dose again exhibited BNP had the higher 50% of plasma concentration (t1/2), a higher maximum plasma concentration (Cmax) and took longer to reach the maximum plasma concentration (Tmax) than parent B. Next, our in vivo study using nitrosodiethyl amine (NDEA)-induced HCC model documented BNP decreased in number of nodules, restored body weight, oxidative stress parameters, liver marker enzymes and histological architecture than parent B. Lastly, qRT-PCR studies further demonstrated that anti-HCC properties of BNP may be due to over expression of antiapoptotic caspases i.e., caspase 3 and 8. Conclusion The prepared BNP showed a better therapeutic response against HCC and could be attributed as future candidate molecule for HCC treatment.


Cytokine | 2018

Novel 1,3,4-thiadiazoles inhibit colorectal cancer via blockade of IL-6/COX-2 mediated JAK2/STAT3 signals as evidenced through data-based mathematical modeling

Vinit Raj; Archana S. Bhadauria; Ashok K. Singh; Umesh Kumar; Amit Rai; Amit K Keshari; Pranesh Kumar; Dinesh Kumar; Biswanath Maity; Sneha Nath; Anand Prakash; Kausar M. Ansari; Jawahar Lal jat; Sudipta Saha

We attempted a preclinical study using DMH-induced CRC rat model to evaluate the antitumor potential of our recently synthesized 1,3,4-thiadiazoles. The molecular insights were confirmed through ELISA, qRT-PCR and western blot analyses. The CRC condition was produced in response to COX-2 and IL-6 induced activation of JAK2/STAT3 which, in turn, was due to the enhanced phosphorylation of JAK2 and STAT3. The treatment with 1,3,4-thiadiazole derivatives (VR24 and VR27) caused the significant blockade of this signaling pathway. The behavior of STAT3 populations in response to IL-6 and COX-2 stimulations was further confirmed through data-based mathematical modeling using the quantitative western blot data. Finally, VR24 and VR27 restored the perturbed metabolites associated to DMH-induced CRC as evidenced through 1H NMR based serum metabolomics. The tumor protecting ability of VR24 and VR27 was found comparable or to some degree better than the marketed chemotherapeutics, 5-flurouracil.


Scientific Reports | 2018

Novel Indole-fused benzo-oxazepines (IFBOs) inhibit invasion of hepatocellular carcinoma by targeting IL-6 mediated JAK2/STAT3 oncogenic signals

Ashok K. Singh; Archana S. Bhadauria; Umesh Kumar; Vinit Raj; Amit Rai; Pranesh Kumar; Amit K Keshari; Dinesh Kumar; Biswanath Maity; Sneha Nath; Anand Prakash; Sudipta Saha

Inspired by the well-documented tumor protecting ability of paullones, recently, we synthesized novel paullone-like scaffolds, indole-fused benzo-oxazepines (IFBOs), and screened them against hepatocellular carcinoma (HCC) specific Hep-G2 cells. Three of the synthesized compounds significantly attenuated the progression of HCC in vitro. By computational studies, we further discovered that IFBOs exhibited a stable binding complex with the IL-6 receptor. In this context, we investigated in vivo study using the nitrosodiethyl amine (NDEA)-induced HCC model, which strengthened our previous findings by showing the blockade of the IL-6 mediated JAK2/STAT3 oncogenic signaling pathway. Treatment with IFBOs showed remarkable attenuation of cellular proliferation, as evidenced through a decrease in the number of nodules, restoration of body weight, oxidative stress parameters, liver marker enzymes and histological architecture. Interestingly, using a metabolomic approach we further discovered that IFBOs can restore the perturbed metabolic profile associated with the HCC condition to normalcy. Particularly, the efficacy of compound 6a for an anti-HCC response was significantly better than the marketed chemotherapeutic drug, 5-fluorouracil. Altogether, these remarkable findings open up possibilities of developing IFBOs as novel future candidate molecules for plausible alternatives for HCC treatment.


Life Sciences | 2018

Betulinic acid as apoptosis activator: Molecular mechanisms, mathematical modeling and chemical modifications

Pranesh Kumar; Archana S. Bhadauria; Ashok K. Singh; Sudipta Saha

ABSTRACT A natural product betulinic acid (BA) has gained a huge significance in the recent years for its strong cytotoxicity. Surprisingly, in spite of being an interesting cancer protecting agent on a variety of tumor cells, the normal cells and tissues are rarely affected by BA. Betulinic acid and analogues (BAs) generally exert through the mechanisms that provokes an event of direct cell death and bypass the resistance to normal chemotherapeutics. Although the major mechanism associated with its ability to induce direct cell death is mitochondrial apoptosis, there are several other mechanisms explored recently. Importantly, mathematical modeling of apoptosis has been an important tool to explore the precise mechanism involved in mitochondrial apoptosis. Thus, this review is an endeavor to sum up the molecular mechanisms underlying the action of BA and future directions to apply mathematical modeling technique to better understand the precise mechanism of BA‐induced apoptosis. The last section of the review encompasses the plausible structural modifications and formulations to enhance the therapeutic efficacy of BA.


Biomedicine & Pharmacotherapy | 2018

6,7-dimethoxy-1,2,3,4-tetrahydro-isoquinoline-3-carboxylic acid attenuates colon carcinogenesis via blockade of IL-6 mediated signals

Priyanka Mishra; Vinit Raj; Archana S. Bhadauria; Ashok K. Singh; Amit Rai; Pranesh Kumar; Amit K Keshari; Arnab De; Amalesh Samanta; Umesh Kumar; Dinesh Kumar; Biswanath Maity; Sneha Nath; Anand Prakash; Kausar M. Ansari; Sudipta Saha

In this study, we investigated the in vivo antiproliferative activity of 6,7-dimethoxy-1,2,3,4-tetrahydro-isoquinoline-3-carboxylic acid (M1) in dimethylhydrazine (DMH) induced colorectal carcinoma (CRC) using albino Wistar rats. M1 was administered to DMH induced CRC rats at 10 and 25 mg/kg doses for 15 days. Various physiological, oxidative parameters, histopathology, ELISA, gene and protein expression studies were conducted to evaluate the anti-CRC potential of M1. The histopathology and biochemical tests indicated the protective action of M1 in DMH-induced colon cancer. ELISA confirms that M1 reduced the increased concentration of IL-6 more prominently than those of IL-2 and COX-2. Gene expression analysis revealed that M1 attenuated the increased mRNA over-expression of IL-6, JAK2 and STAT3. The result obtained from quantitative western blot analysis demonstrated that the CRC condition was produced by the IL-6 induced activation/phosphorylation of JAK2 and STAT3 and further down-regulated with M1 treatment. This evidence was supported well with the application of data-based mathematical modeling. Applying the fitted model, we predicted the quantitative behavior of STAT3 populations not accessible to experimental measurement. Later, 1H NMR based serum metabolic profiling was carried out using rat sera to investigate the impact of M1 on CRC-induced metabolic alterations. M1 showed its ability to restore the perturbed metabolites in CRC condition. Altogether, our study provided the first time evidence that M1 exhibits anti-CRC potential through the blockade of IL-6/JAK2/STAT3 oncogenic signaling.


Pharmacological Research | 2017

Novel 1,4-benzothazines obliterate COX-2 mediated JAK-2/STAT-3 signals with potential regulation of oxidative and metabolic stress during colorectal cancer

Amit Rai; Umesh Kumar; Vinit Raj; Ashok K. Singh; Pranesh Kumar; Amit K Keshari; Dinesh Kumar; Biswanath Maity; Arnab De; Amalesh Samanta; Sneha Nath; Anand Prakash; Sunil Babu Gosipatala; Gyan Chand; Sudipta Saha

&NA; 1,4‐benzothiazines have ameliorative effects through inhibition of COX‐2 mediated STAT‐3 pathways at G‐protein couple receptor site. As per this scenario, we recently prepared and tested novel 1,4‐benzothiazine derivatives against HT‐29 human colon cancer cell line. Two compounds namely AR13 and AR15 showed higher inhibitions among all the synthesized compounds. In the present context, we conducted the in vivo antiproliferative action and identified the molecular mechanism associated to cytotoxic action of AR13 and AR15 in dimethylhydrazine (DMH) induced colorectal carcinoma (CRC) model. Various physiological, oxidative stress, histopathology, ELISA, qRT‐PCR, western blot and NMR‐based metabolomics were accomplished to evaluate the anticancer effect of titled compounds. Both compounds were subjected to histological and biochemical tests to observe the protective action of the compounds. ELISA showed potential role of these compounds to normalize increased levels of IL‐2, IL‐6 and COX‐2 mediators. This action was more pronounced for COX‐2 rather than IL‐2 and IL‐6. Gene expression analyses further revealed that both of them attenuated the over‐expressed COX‐2 gene. Furthermore, it was confirmed that these compounds exerted antitumor potential via preventing COX‐2 induced JAK‐2 and STAT‐3 phosphorylation. This action was substansiated by immunohistochemistry using JAK2, p‐JAK2, STAT3 and p‐STAT3 targets in colon tissue. Finally, score plots of PLS‐DA models exhibited significant metabolic discriminations between the treated and CRC groups, and both compounds showed ability to restore the imbalance of multiple metabolites during CRC. In conclusion, our study provided the evidence towards better antiproliferative effect of AR13 and AR15 in DMH‐induced CRC through the blockade of COX‐2/JAK‐2/STAT‐3 signal transduction pathway and could be demonstrated as useful anti‐CRC candidate molecules for future anticancer therapy. Graphical abstract Figure. No caption available.


Future Science OA | 2017

6,7-dimethoxy-1,2,3,4-tetrahydro-isoquinoline-3-carboxylic acid attenuates heptatocellular carcinoma in rats with NMR-based metabolic perturbations

Pranesh Kumar; Ashok K. Singh; Vinit Raj; Amit Rai; Siddhartha Maity; Atul Rawat; Umesh Kumar; Dinesh Kumar; Anand Prakash; Anupam Guleria; Sudipta Saha

Aim: 6,7-dimethoxy-1,2,3,4-tetrahydro-isoquinoline-3-carboxylic acid (M1) was synthesized and evaluated for in-vivo antiproliferative action in diethylnitrosamine-induced hepatocarcinogenic rats. Materials & methods: The antiproliferative effect of M1 was assessed by various biochemical parameters, histopathology of liver and HPLC analysis. Proton nuclear magnetic resonance-based serum metabolic study was implemented on rat sera to explore the effects of M1 on hepatocellular carcinoma-induced metabolic alterations. Results: M1 showed protective action on liver and restored the arrangement of liver tissues in normal proportion. HPLC analysis displayed a good plasma drug concentration after its oral administration. Score plots of partial least squares discriminate analysis models exhibited that M1 therapy ameliorated hepatocellular carcinoma-induced metabolic alterations which signified its antiproliferative potential. Conclusion: M1 manifested notable antiproliferative profile, and warrants further investigation for future anticancer therapy.


Drug Design Development and Therapy | 2017

5H-benzo[h]thiazolo[2,3-b]quinazolines ameliorate NDEA-induced hepatocellular carcinogenesis in rats through IL-6 downregulation along with oxidative and metabolic stress reduction

Amit K Keshari; Ashok K. Singh; Umesh Kumar; Vinit Raj; Amit Rai; Pranesh Kumar; Dinesh Kumar; Biswanath Maity; Sneha Nath; Anand Prakash; Sudipta Saha

5H-benzo[h]thiazolo[2,3-b]quinazoline scaffold is known to have an antitumor effect on certain types of malignancies; however, its effect on hepatocellular carcinoma (HCC) remains unclear. Previously, we reported p-toluenesulfonic acid-promoted syntheses, molecular modeling and in vitro antitumor activity of 5H-benzo[h]thiazolo[2,3-b]quinazoline against human hepatoma (Hep-G2) cells where compounds 4A and 6A were found to be potent inhibitors among the series. In continuation to our previous effort to develop novel therapeutic strategies for HCC treatment, here we investigated the in vivo antitumor activity and the mechanism underlying the effects of 4A and 6A in N-nitrosodiethylamine (NDEA)-induced HCC using male Wistar rats. NDEA was administered weekly intraperitoneally at a dose of 100 mg/kg for 6 weeks. Various physiological and morphological changes, oxidative parameters, liver marker enzymes and cytokines were assessed to evaluate the antitumor effect of 4A and 6A. In addition, proton nuclear magnetic resonance-based serum metabolomics were performed to analyze the effects of 4A and 6A against HCC-induced metabolic alterations. Significant tumor incidences with an imbalance in carcinogen metabolizing enzymes and cellular redox status were observed in carcinogenic rats. Tumor inhibitory effects of 4A and 6A were noted by histopathology and biochemical profiles in NDEA-induced hepatic cancer. Compounds 4A and 6A had a potential role in normalizing the elevated levels of inflammatory mediators such as interleukin-1β (IL-1β), IL-2, IL-6 and IL-10. At molecular level, the real-time quantitative reverse-transcribed polymerase chain reaction analysis revealed that 4A and 6A attenuated the IL-6 gene overexpression in hepatic cancer. Further, orthogonal partial least squares discriminant analysis scores plot demonstrated a significant separation of 4A and 6A-treated groups from carcinogen control group. Both the compounds have potential to restore the imbalanced metabolites due to HCC, signifying promising hepatoprotective activities. All these findings suggested that 4A and 6A could be potential drug candidates to treat HCC.

Collaboration


Dive into the Pranesh Kumar's collaboration.

Top Co-Authors

Avatar

Sudipta Saha

Babasaheb Bhimrao Ambedkar University

View shared research outputs
Top Co-Authors

Avatar

Ashok K. Singh

Babasaheb Bhimrao Ambedkar University

View shared research outputs
Top Co-Authors

Avatar

Amit K Keshari

Babasaheb Bhimrao Ambedkar University

View shared research outputs
Top Co-Authors

Avatar

Vinit Raj

Babasaheb Bhimrao Ambedkar University

View shared research outputs
Top Co-Authors

Avatar

Amit Rai

Babasaheb Bhimrao Ambedkar University

View shared research outputs
Top Co-Authors

Avatar

Anand Prakash

Babasaheb Bhimrao Ambedkar University

View shared research outputs
Top Co-Authors

Avatar

Dinesh Kumar

Sanjay Gandhi Post Graduate Institute of Medical Sciences

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Umesh Kumar

Indian Institute of Technology Roorkee

View shared research outputs
Top Co-Authors

Avatar

Sneha Nath

Babasaheb Bhimrao Ambedkar University

View shared research outputs
Researchain Logo
Decentralizing Knowledge