Prasanna Jagannathan
Stanford University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Prasanna Jagannathan.
PLOS Pathogens | 2014
Prasanna Jagannathan; Ijeoma Eccles-James; Katherine Bowen; Felistas Nankya; Ann Auma; Samuel Wamala; Charles Ebusu; Mary K. Muhindo; Emmanuel Arinaitwe; Jessica Briggs; Bryan Greenhouse; Jordan W. Tappero; Moses R. Kamya; Grant Dorsey; Margaret E. Feeney
Although evidence suggests that T cells are critical for immunity to malaria, reliable T cell correlates of exposure to and protection from malaria among children living in endemic areas are lacking. We used multiparameter flow cytometry to perform a detailed functional characterization of malaria-specific T cells in 78 four-year-old children enrolled in a longitudinal cohort study in Tororo, Uganda, a highly malaria-endemic region. More than 1800 episodes of malaria were observed in this cohort, with no cases of severe malaria. We quantified production of IFNγ, TNFα, and IL-10 (alone or in combination) by malaria-specific T cells, and analyzed the relationship of this response to past and future malaria incidence. CD4+ T cell responses were measurable in nearly all children, with the majority of children having CD4+ T cells producing both IFNγ and IL-10 in response to malaria-infected red blood cells. Frequencies of IFNγ/IL10 co-producing CD4+ T cells, which express the Th1 transcription factor T-bet, were significantly higher in children with ≥2 prior episodes/year compared to children with <2 episodes/year (P<0.001) and inversely correlated with duration since malaria (Rho = −0.39, P<0.001). Notably, frequencies of IFNγ/IL10 co-producing cells were not associated with protection from future malaria after controlling for prior malaria incidence. In contrast, children with <2 prior episodes/year were significantly more likely to exhibit antigen-specific production of TNFα without IL-10 (P = 0.003). While TNFα-producing CD4+ T cells were not independently associated with future protection, the absence of cells producing this inflammatory cytokine was associated with the phenotype of asymptomatic infection. Together these data indicate that the functional phenotype of the malaria-specific T cell response is heavily influenced by malaria exposure intensity, with IFNγ/IL10 co-producing CD4+ T cells dominating this response among highly exposed children. These CD4+ T cells may play important modulatory roles in the development of antimalarial immunity.
Malaria Journal | 2012
Prasanna Jagannathan; Mary K. Muhindo; Abel Kakuru; Emmanuel Arinaitwe; Bryan Greenhouse; Jordan W. Tappero; Philip J. Rosenthal; Frank Kaharuza; Moses R. Kamya; Grant Dorsey
BackgroundThe burden of malaria has decreased in parts of Africa following the scaling up of control interventions. However, similar data are limited from high transmission settings.MethodsA cohort of 100 children, aged six weeks to 10 months of age, were enrolled in an area of high malaria transmission intensity and followed through 48 months of age. Children were given a long-lasting insecticide-treated bed net (LLIN) at enrolment and received all care, including monthly blood smears and treatment with artemisinin-based combination therapy (ACT) for uncomplicated malaria, at a dedicated clinic. The incidence of malaria was estimated by passive surveillance and associations between malaria incidence and age, calendar time and season were measured using generalized estimating equations.ResultsReported compliance with LLINs was 98% based on monthly routine evaluations. A total of 1,633 episodes of malaria were observed, with a median incidence of 5.3 per person-year (PPY). There were only six cases of complicated malaria, all single convulsions. Malaria incidence peaked at 6.5 PPY at 23 months of age before declining to 3.5 PPY at 48 months. After adjusting for age and season, the risk of malaria increased by 52% from 2008 to 2011 (RR 1.52, 95% CI 1.10-2.09). Asymptomatic parasitaemia was uncommon (monthly prevalence <10%) and rarely observed prior to 24 months of age.ConclusionsIn Tororo, despite provision of LLINs and prompt treatment with ACT, the incidence of malaria is very high and appears to be rising. Additional malaria control interventions in high transmission settings are likely needed.Trial registrationCurrent Controlled Trials Identifier NCT00527800
Journal of Virology | 2009
Prasanna Jagannathan; Christine M. Osborne; Cassandra Royce; Maura Manion; John C. Tilton; Li Li; Steven H. Fischer; Claire W. Hallahan; Julia A. Metcalf; Mary McLaughlin; Matthew R. Pipeling; John F. McDyer; Thomas J. Manley; Jeffery L. Meier; John D. Altman; Laura Hertel; Richard T. Davey; Mark Connors; Stephen A. Migueles
ABSTRACT To better understand the components of an effective immune response to human immunodeficiency virus (HIV), the CD8+ T-cell responses to HIV, hepatitis C virus (HCV), and cytomegalovirus (CMV) were compared with regard to frequency, immunodominance, phenotype, and interleukin-2 (IL-2) responsiveness. Responses were examined in rare patients exhibiting durable immune-mediated control over HIV, termed long-term nonprogressors (LTNP) or elite controllers, and patients with progressive HIV infection (progressors). The magnitude of the virus-specific CD8+ T-cell response targeting HIV, CMV, and HCV was not significantly different between LTNP and progressors, even though their capacity to proliferate to HIV antigens was preserved only in LTNP. In contrast to HIV-specific CD8+ T-cell responses of LTNP, HLA B5701-restricted responses within CMV pp65 were rare and did not dominate the total CMV-specific response. Virus-specific CD8+ T cells were predominantly CD27+45RO+ for HIV and CD27−45RA+ for CMV; however, these phenotypes were highly variable and heavily influenced by the degree of viremia. Although IL-2 induced significant expansions of CMV-specific CD8+ T cells in LTNP and progressors by increasing both the numbers of cells entering the proliferating pool and the number of divisions, the proliferative capacity of a significant proportion of HIV-specific CD8+ T cells was not restored with exogenous IL-2. These results suggest that immunodominance by HLA B5701-restricted cells is specific to HIV infection in LTNP and is not a feature of responses to other chronic viral infections. They also suggest that poor responsiveness to IL-2 is a property of HIV-specific CD8+ T cells of progressors that is not shared with responses to other viruses over which immunologic control is maintained.
The New England Journal of Medicine | 2016
Abel Kakuru; Prasanna Jagannathan; Mary K. Muhindo; Paul Natureeba; Patricia Awori; Miriam Nakalembe; Bishop Opira; Peter Olwoch; John Ategeka; Patience Nayebare; Tamara D. Clark; Margaret E. Feeney; Edwin D. Charlebois; Gabrielle Rizzuto; Atis Muehlenbachs; Diane V. Havlir; Moses R. Kamya; Grant Dorsey
BACKGROUND Intermittent treatment with sulfadoxine-pyrimethamine is widely recommended for the prevention of malaria in pregnant women in Africa. However, with the spread of resistance to sulfadoxine-pyrimethamine, new interventions are needed. METHODS We conducted a double-blind, randomized, controlled trial involving 300 human immunodeficiency virus (HIV)-uninfected pregnant adolescents or women in Uganda, where sulfadoxine-pyrimethamine resistance is widespread. We randomly assigned participants to a sulfadoxine-pyrimethamine regimen (106 participants), a three-dose dihydroartemisinin-piperaquine regimen (94 participants), or a monthly dihydroartemisinin-piperaquine regimen (100 participants). The primary outcome was the prevalence of histopathologically confirmed placental malaria. RESULTS The prevalence of histopathologically confirmed placental malaria was significantly higher in the sulfadoxine-pyrimethamine group (50.0%) than in the three-dose dihydroartemisinin-piperaquine group (34.1%, P=0.03) or the monthly dihydroartemisinin-piperaquine group (27.1%, P=0.001). The prevalence of a composite adverse birth outcome was lower in the monthly dihydroartemisinin-piperaquine group (9.2%) than in the sulfadoxine-pyrimethamine group (18.6%, P=0.05) or the three-dose dihydroartemisinin-piperaquine group (21.3%, P=0.02). During pregnancy, the incidence of symptomatic malaria was significantly higher in the sulfadoxine-pyrimethamine group (41 episodes over 43.0 person-years at risk) than in the three-dose dihydroartemisinin-piperaquine group (12 episodes over 38.2 person-years at risk, P=0.001) or the monthly dihydroartemisinin-piperaquine group (0 episodes over 42.3 person-years at risk, P<0.001), as was the prevalence of parasitemia (40.5% in the sulfadoxine-pyrimethamine group vs. 16.6% in the three-dose dihydroartemisinin-piperaquine group [P<0.001] and 5.2% in the monthly dihydroartemisinin-piperaquine group [P<0.001]). In each treatment group, the risk of vomiting after administration of any dose of the study agents was less than 0.4%, and there were no significant differences among the groups in the risk of adverse events. CONCLUSIONS The burden of malaria in pregnancy was significantly lower among adolescent girls or women who received intermittent preventive treatment with dihydroartemisinin-piperaquine than among those who received sulfadoxine-pyrimethamine, and monthly treatment with dihydroartemisinin-piperaquine was superior to three-dose dihydroartemisinin-piperaquine with regard to several outcomes. (Funded by the Eunice Kennedy Shriver National Institute of Child Health and Human Development; ClinicalTrials.gov number, NCT02163447.).
Malaria Journal | 2008
Catherine Maiteki-Sebuguzi; Prasanna Jagannathan; Vincent Yau; Tamara D. Clark; Denise Njama-Meya; Bridget Nzarubara; Ambrose Talisuna; Moses R. Kamya; Philip J. Rosenthal; Grant Dorsey; Sarah G. Staedke
BackgroundCombination antimalarial therapy is recommended for the treatment of uncomplicated falciparum malaria in Africa; however, some concerns about the safety and tolerability of new regimens remain. This study compared the safety and tolerability of three combination antimalarial regimens in a cohort of Ugandan children.MethodsA longitudinal, single-blind, randomized clinical trial of children was conducted between November 2004 and May 2007 in Kampala, Uganda. Upon diagnosis of the first episode of uncomplicated malaria, participants were randomized to treatment with amodiaquine + sulphadoxine-pyrimethamine (AQ+SP), artesunate + amodiaquine (AS+AQ), or artemether-lumefantrine (AL). Once randomized, participants received the same regimen for all subsequent episodes of uncomplicated malaria. Participants were actively monitored for adverse events for the first 14 days after each treatment, and then passively followed until their next study medication treatment, or withdrawal from study. Outcome measures included the risk of adverse events at 14 and 42 days after treatment.ResultsOf 601 enrolled children, 382 were diagnosed with at least one episode of uncomplicated malaria and were treated with study medications. The median age at treatment was 6.3 years (range 1.1 – 12.3 years). At 14 days of follow-up, AQ+SP treatment was associated with a higher risk of anorexia, weakness, and subjective fever than treatment with AL, and a higher risk of weakness, and subjective fever than treatment with AS+AQ. Treatment with AL was associated with a higher risk of elevated temperature. Repeated episodes of neutropaenia associated with AS+AQ were detected in one participant. Considering only children less than five years, those who received AQ+SP were at higher risk of developing moderate or severe anorexia and weakness than those treated with AL (anorexia: RR 3.82, 95% CI 1.59 – 9.17; weakness: RR 5.40, 95% CI 1.86 – 15.7), or AS+AQ (anorexia: RR 2.10, 95% CI 1.04 – 4.23; weakness: RR 2.26, 95% CI 1.01 – 5.05). Extending the analysis to 42 days of follow-up had little impact on the findings.ConclusionThis study confirms the safety and tolerability of AS+AQ and AL in Ugandan children, and suggests that AQ+SP is safe, but less well-tolerated, particularly in younger children. As newer antimalarial regimens are deployed, collecting data on their safety and tolerability will be essential.Trial registrationCurrent Controlled Trials Identifier ISRCTN37517549
Science Translational Medicine | 2014
Prasanna Jagannathan; Charles C. Kim; Bryan Greenhouse; Felistas Nankya; Katherine Bowen; Ijeoma Eccles-James; Mary K. Muhindo; Emmanuel Arinaitwe; Jordan W. Tappero; Moses R. Kamya; Grant Dorsey; Margaret E. Feeney
Loss and dysfunction of γδ T cells is associated with tolerance to P. falciparum infection. Tolerating Malaria Individuals living in malaria-endemic regions may develop “clinical immunity”—they still get infected with the parasite, but don’t show signs of infection. Jagannathan et al. now report one possible explanation for this malarial tolerance. They found that a subset of innate-like lymphocytes—γδ T cells—are lost in patients with repeated malaria exposure. What’s more, the γδ T cells that remain behave differently than the proinflammatory cells in people without prior malaria infection; they produce lower amounts of cytokines and express immunoregulatory genes. Therefore, although the patients may be asymptomatic, they likely do not effectively clear the infection and could serve as reservoirs for propagating disease. Although clinical immunity to malaria eventually develops among children living in endemic settings, the underlying immunologic mechanisms are not known. The Vδ2+ subset of γδ T cells have intrinsic reactivity to malaria antigens, can mediate killing of Plasmodium falciparum merozoites, and expand markedly in vivo after malaria infection in previously naïve hosts, but their role in mediating immunity in children repeatedly exposed to malaria is unclear. We evaluated γδ T cell responses to malaria among 4-year-old children enrolled in a longitudinal study in Uganda. We found that repeated malaria was associated with reduced percentages of Vδ2+ γδ T cells in peripheral blood, decreased proliferation and cytokine production in response to malaria antigens, and increased expression of immunoregulatory genes. Further, loss and dysfunction of proinflammatory Vδ2+ γδ T cells were associated with a reduced likelihood of symptoms upon subsequent P. falciparum infection. Together, these results suggest that repeated malaria infection during childhood results in progressive loss and dysfunction of Vδ2+ γδ T cells that may facilitate immunological tolerance of the parasite.
PLOS Pathogens | 2015
Richard T. Sullivan; Charles C. Kim; Mary F. Fontana; Margaret E. Feeney; Prasanna Jagannathan; Michelle J. Boyle; Chris Drakeley; Isaac Ssewanyana; Felistas Nankya; Harriet Mayanja-Kizza; Grant Dorsey; Bryan Greenhouse
Exposure to Plasmodium falciparum is associated with circulating “atypical” memory B cells (atMBCs), which appear similar to dysfunctional B cells found in HIV-infected individuals. Functional analysis of atMBCs has been limited, with one report suggesting these cells are not dysfunctional but produce protective antibodies. To better understand the function of malaria-associated atMBCs, we performed global transcriptome analysis of these cells, obtained from individuals living in an area of high malaria endemicity in Uganda. Comparison of gene expression data suggested down-modulation of B cell receptor signaling and apoptosis in atMBCs compared to classical MBCs. Additionally, in contrast to previous reports, we found upregulation of Fc receptor-like 5 (FCRL5), but not FCRL4, on atMBCs. Atypical MBCs were poor spontaneous producers of antibody ex vivo, and higher surface expression of FCRL5 defined a distinct subset of atMBCs compromised in its ability to produce antibody upon stimulation. Moreover, higher levels of P. falciparum exposure were associated with increased frequencies of FCRL5+ atMBCs. Together, our findings suggest that FCLR5+ identifies a functionally distinct, and perhaps dysfunctional, subset of MBCs in individuals exposed to P. falciparum.
Malaria Journal | 2014
Mary K. Muhindo; Abel Kakuru; Prasanna Jagannathan; Ambrose Talisuna; Emmanuel Osilo; Francis Orukan; Emmanuel Arinaitwe; Jordan W. Tappero; Frank Kaharuza; Moses R. Kamya; Grant Dorsey
BackgroundArtemisinin-based combination therapy (ACT) is widely recommended as first-line therapy for uncomplicated Plasmodium falciparum malaria worldwide. Artemisinin resistance has now been reported in Southeast Asia with a clinical phenotype manifested by slow parasite clearance. Although there are no reliable reports of artemisinin resistance in Africa, there is a need to better understand the dynamics of parasite clearance in African children treated with ACT in order to better detect the emergence of artemisinin resistance.MethodsData from a cohort of Ugandan children four to five years old, enrolled in a longitudinal, randomized, clinical trial comparing two leading ACT, artemether-lumefantrine (AL) and dihydroartemisinin-piperaquine (DP), were analysed. For all episodes of uncomplicated P. falciparum malaria over a 14-month period, daily blood smears were performed for three days following the initiation of therapy. Associations between pre-treatment variables of interest and persistent parasitaemia were estimated using multivariate, generalized, estimating equations with adjustment for repeated measures in the same patient.ResultsA total of 202 children were included, resulting in 416 episodes of malaria treated with AL and 354 episodes treated with DP. The prevalence of parasitaemia on days 1, 2, and 3 following initiation of therapy was 67.6, 5.6 and 0% in those treated with AL, and 52.2, 5.7 and 0.3% in those treated with DP. Independent risk factors for persistent parasitaemia on day 1 included treatment with AL vs DP (RR = 1.34, 95% CI 1.20-1.50, p < 0.001), having a temperature ≥38.0°C vs < 37.0°C (RR = 1.19, 95% CI 1.05-1.35, p = 0.007) and having a parasite density >20,000/μL vs <4,000/μL (RR = 3.37, 95% CI 2.44-4.49, p < 0.001). Independent risk factors for having persistent parasitaemia on day 2 included elevated temperature, higher parasite density, and being HIV infected.ConclusionsAmong Ugandan children, parasite clearance following treatment with AL or DP was excellent with only one of 752 patients tested having a positive blood slide three days after initiation of therapy. The type of ACT given, pre-treatment temperature, pre-treatment parasite density and HIV status were associated with differences in persistent parasitaemia, one or two days following therapy.Trial registrationCurrent Controlled Trials IdentifierNCT00527800.
Malaria Journal | 2008
Sarah G Staedke; Prasanna Jagannathan; Adoke Yeka; Hasifa Bukirwa; Kristin Banek; Catherine Maiteki-Sebuguzi; Tamara D. Clark; Bridget Nzarubara; Denise Njama-Meya; Arthur Mpimbaza; Philip J. Rosenthal; Moses R. Kamya; Fred Wabwire-Mangen; Grant Dorsey; Ambrose Talisuna
BackgroundNew antimalarial regimens, including artemisinin-based combination therapies (ACTs), have been adopted widely as first-line treatment for uncomplicated malaria. Although these drugs appear to be safe and well-tolerated, experience with their use in Africa is limited and continued assessment of safety is a priority. However, no standardized guidelines for evaluating drug safety and tolerability in malaria studies exist. A system for monitoring adverse events in antimalarial trials conducted in Uganda was developed. Here the reporting system is described, and difficulties faced in analysing and interpreting the safety results are illustrated, using data from the trials.Case descriptionBetween 2002 and 2007, eleven randomized, controlled clinical trials were conducted to compare the efficacy, safety, and tolerability of different antimalarial regimens for treatment of uncomplicated malaria in Uganda. The approach to adverse event monitoring was similar in all studies. A total of 5,614 treatments were evaluated in 4,876 patients. Differences in baseline characteristics and patterns of adverse event reporting were noted between the sites, which limited the ability to pool and analyse data. Clinical failure following antimalarial treatment confounded associations between treatment and adverse events that were also common symptoms of malaria, particularly in areas of lower transmission intensity.Discussion and evaluationDespite prospectively evaluating for adverse events, limitations in the monitoring system were identified. New standardized guidelines for monitoring safety and tolerability in antimalarial trials are needed, which should address how to detect events of greatest importance, including serious events, those with a causal relationship to the treatment, those which impact on adherence, and events not previously reported.ConclusionAlthough the World Health Organization has supported the development of pharmacovigilance systems in African countries deploying ACTs, additional guidance on adverse events monitoring in antimalarial clinical trials is needed, similar to the standardized recommendations available for assessment of drug efficacy.
PLOS Pathogens | 2015
Michelle J. Boyle; Prasanna Jagannathan; Lila A. Farrington; Ijeoma Eccles-James; Samuel Wamala; Tara I. McIntyre; Hilary M. Vance; Katherine Bowen; Felistas Nankya; Ann Auma; Mayimuna Nalubega; Esther Sikyomu; Kate Naluwu; John Rek; Agaba Katureebe; Victor Bigira; James Kapisi; Jordan W. Tappero; Mary K. Muhindo; Bryan Greenhouse; Emmanuel Arinaitwe; Grant Dorsey; Moses R. Kamya; Margaret E. Feeney
FoxP3+ regulatory CD4 T cells (Tregs) help to maintain the delicate balance between pathogen-specific immunity and immune-mediated pathology. Prior studies suggest that Tregs are induced by P. falciparum both in vivo and in vitro; however, the factors influencing Treg homeostasis during acute and chronic infections, and their role in malaria immunopathogenesis, remain unclear. We assessed the frequency and phenotype of Tregs in well-characterized cohorts of children residing in a region of high malaria endemicity in Uganda. We found that both the frequency and absolute numbers of FoxP3+ Tregs in peripheral blood declined markedly with increasing prior malaria incidence. Longitudinal measurements confirmed that this decline occurred only among highly malaria-exposed children. The decline of Tregs from peripheral blood was accompanied by reduced in vitro induction of Tregs by parasite antigen and decreased expression of TNFR2 on Tregs among children who had intense prior exposure to malaria. While Treg frequencies were not associated with protection from malaria, there was a trend toward reduced risk of symptomatic malaria once infected with P. falciparum among children with lower Treg frequencies. These data demonstrate that chronic malaria exposure results in altered Treg homeostasis, which may impact the development of antimalarial immunity in naturally exposed populations.