Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Prasanna R. Bhat is active.

Publication


Featured researches published by Prasanna R. Bhat.


Nature | 2012

A physical, genetic and functional sequence assembly of the barley genome

Klaus F. X. Mayer; Robbie Waugh; Peter Langridge; Timothy J. Close; Roger P. Wise; Andreas Graner; Takashi Matsumoto; Kazuhiro Sato; Alan H. Schulman; Ruvini Ariyadasa; Daniela Schulte; Naser Poursarebani; Ruonan Zhou; Burkhard Steuernagel; Martin Mascher; Uwe Scholz; Bu-Jun Shi; Kavitha Madishetty; Jan T. Svensson; Prasanna R. Bhat; Matthew J. Moscou; Josh Resnik; Gary J. Muehlbauer; Peter E. Hedley; Hui Liu; Jenny Morris; Zeev Frenkel; Avraham Korol; Hélène Bergès; Marius Felder

Barley (Hordeum vulgare L.) is among the world’s earliest domesticated and most important crop plants. It is diploid with a large haploid genome of 5.1 gigabases (Gb). Here we present an integrated and ordered physical, genetic and functional sequence resource that describes the barley gene-space in a structured whole-genome context. We developed a physical map of 4.98 Gb, with more than 3.90 Gb anchored to a high-resolution genetic map. Projecting a deep whole-genome shotgun assembly, complementary DNA and deep RNA sequence data onto this framework supports 79,379 transcript clusters, including 26,159 ‘high-confidence’ genes with homology support from other plant genomes. Abundant alternative splicing, premature termination codons and novel transcriptionally active regions suggest that post-transcriptional processing forms an important regulatory layer. Survey sequences from diverse accessions reveal a landscape of extensive single-nucleotide variation. Our data provide a platform for both genome-assisted research and enabling contemporary crop improvement.


Proceedings of the National Academy of Sciences of the United States of America | 2006

Recent history of artificial outcrossing facilitates whole-genome association mapping in elite inbred crop varieties

Nils Rostoks; Luke Ramsay; Katrin MacKenzie; Linda Cardle; Prasanna R. Bhat; Mikeal L. Roose; Jan T. Svensson; Nils Stein; Rajeev K. Varshney; David Marshall; Andreas Graner; Timothy J. Close; Robbie Waugh

Genomewide association studies depend on the extent of linkage disequilibrium (LD), the number and distribution of markers, and the underlying structure in populations under study. Outbreeding species generally exhibit limited LD, and consequently, a very large number of markers are required for effective whole-genome association genetic scans. In contrast, several of the worlds major food crops are self-fertilizing inbreeding species with narrow genetic bases and theoretically extensive LD. Together these are predicted to result in a combination of low resolution and a high frequency of spurious associations in LD-based studies. However, inbred elite plant varieties represent a unique human-induced pseudooutbreeding population that has been subjected to strong selection for advantageous alleles. By assaying 1,524 genomewide SNPs we demonstrate that, after accounting for population substructure, the level of LD exhibited in elite northwest European barley, a typical inbred cereal crop, can be effectively exploited to map traits by using whole-genome association scans with several hundred to thousands of biallelic SNPs.


PLOS Genetics | 2008

Efficient and Accurate Construction of Genetic Linkage Maps from the Minimum Spanning Tree of a Graph

Yonghui Wu; Prasanna R. Bhat; Timothy J. Close; Stefano Lonardi

Genetic linkage maps are cornerstones of a wide spectrum of biotechnology applications, including map-assisted breeding, association genetics, and map-assisted gene cloning. During the past several years, the adoption of high-throughput genotyping technologies has been paralleled by a substantial increase in the density and diversity of genetic markers. New genetic mapping algorithms are needed in order to efficiently process these large datasets and accurately construct high-density genetic maps. In this paper, we introduce a novel algorithm to order markers on a genetic linkage map. Our method is based on a simple yet fundamental mathematical property that we prove under rather general assumptions. The validity of this property allows one to determine efficiently the correct order of markers by computing the minimum spanning tree of an associated graph. Our empirical studies obtained on genotyping data for three mapping populations of barley (Hordeum vulgare), as well as extensive simulations on synthetic data, show that our algorithm consistently outperforms the best available methods in the literature, particularly when the input data are noisy or incomplete. The software implementing our algorithm is available in the public domain as a web tool under the name MSTmap.


Proceedings of the National Academy of Sciences of the United States of America | 2009

A consensus genetic map of cowpea [Vigna unguiculata (L) Walp.] and synteny based on EST-derived SNPs

Wellington Muchero; Ndeye N. Diop; Prasanna R. Bhat; Raymond D. Fenton; Steve Wanamaker; Marti Pottorff; Sarah Hearne; Ndiaga Cisse; Christian Fatokun; Jeffrey D. Ehlers; Philip A. Roberts; Timothy J. Close

Consensus genetic linkage maps provide a genomic framework for quantitative trait loci identification, map-based cloning, assessment of genetic diversity, association mapping, and applied breeding in marker-assisted selection schemes. Among “orphan crops” with limited genomic resources such as cowpea [Vigna unguiculata (L.) Walp.] (2n = 2x = 22), the use of transcript-derived SNPs in genetic maps provides opportunities for automated genotyping and estimation of genome structure based on synteny analysis. Here, we report the development and validation of a high-throughput EST-derived SNP assay for cowpea, its application in consensus map building, and determination of synteny to reference genomes. SNP mining from 183,118 ESTs sequenced from 17 cDNA libraries yielded ≈10,000 high-confidence SNPs from which an Illumina 1,536-SNP GoldenGate genotyping array was developed and applied to 741 recombinant inbred lines from six mapping populations. Approximately 90% of the SNPs were technically successful, providing 1,375 dependable markers. Of these, 928 were incorporated into a consensus genetic map spanning 680 cM with 11 linkage groups and an average marker distance of 0.73 cM. Comparison of this cowpea genetic map to reference legumes, soybean (Glycine max) and Medicago truncatula, revealed extensive macrosynteny encompassing 85 and 82%, respectively, of the cowpea map. Regions of soybean genome duplication were evident relative to the simpler diploid cowpea. Comparison with Arabidopsis revealed extensive genomic rearrangement with some conserved microsynteny. These results support evolutionary closeness between cowpea and soybean and identify regions for synteny-based functional genomics studies in legumes.


The Plant Genome | 2009

An integrated resource for Barley linkage map and malting quality QTL alignment.

Péter Szűcs; Victoria C. Blake; Prasanna R. Bhat; Shiaoman Chao; Timothy J. Close; Alfonso Cuesta-Marcos; Gary J. Muehlbauer; Luke Ramsay; Robbie Waugh; Patrick M. Hayes

Barley (Hordeum vulgare L.) is an economically important model plant for genetics research. Barley is currently served by an increasingly comprehensive set of tools for genetic analysis that have recently been augmented by high‐density genetic linkage maps built with gene‐based single nucleotide polymorphisms (SNPs). These SNP‐based maps need to be aligned with earlier generation maps, which were used for quantitative trait locus (QTL) detection, by integrating multiple types of markers into a single map. A 2383 locus linkage map was developed using the Oregon Wolfe Barley (OWB) Mapping Population to allow such alignments. The map is based on 1472 SNP, 722 DArT, and 189 prior markers which include morphological, simple sequence repeat (SSR), Restriction Fragment Length Polymorphism (RFLP), and sequence tagged site (STS) loci. This new OWB map forms, therefore, a useful bridge between high‐density SNP‐only maps and prior QTL reports. The application of this bridge concept is shown using malting‐quality QTLs from multiple mapping populations, as reported in the literature. This is the first step toward developing a Barley QTL Community Curation workbook for all types of QTLs and maps, on the GrainGenes website. The OWB‐related resources are available at OWB Data and GrainGenes Tools (OWB‐DGGT) (http://wheat.pw.usda.gov/ggpages/maps/OWB/).


The Plant Genome | 2011

An Improved Consensus Linkage Map of Barley Based on Flow-Sorted Chromosomes and Single Nucleotide Polymorphism Markers

María Muñoz-Amatriaín; Matthew J. Moscou; Prasanna R. Bhat; Jan T. Svensson; Jan Bartoš; Pavla Suchánková; Hana Šimková; Takashi R. Endo; Raymond D. Fenton; Stefano Lonardi; Ana María Castillo; Shiaoman Chao; L. Cistué; Alfonso Cuesta-Marcos; Kerrie L. Forrest; Matthew J. Hayden; Patrick M. Hayes; Richard D. Horsley; Kihara Makoto; David Moody; Kazuhiro Sato; María Pilar Vallés; Brande B. H. Wulff; Gary J. Muehlbauer; Jaroslav Doležel; Timothy J. Close

Recent advances in high‐throughput genotyping have made it easier to combine information from different mapping populations into consensus genetic maps, which provide increased marker density and genome coverage compared to individual maps. Previously, a single nucleotide polymorphism (SNP)‐based genotyping platform was developed and used to genotype 373 individuals in four barley (Hordeum vulgare L.) mapping populations. This led to a 2943 SNP consensus genetic map with 975 unique positions. In this work, we add data from six additional populations and more individuals from one of the original populations to develop an improved consensus map from 1133 individuals. A stringent and systematic analysis of each of the 10 populations was performed to achieve uniformity. This involved reexamination of the four populations included in the previous map. As a consequence, we present a robust consensus genetic map that contains 2994 SNP loci mapped to 1163 unique positions. The map spans 1137.3 cM with an average density of one marker bin per 0.99 cM. A novel application of the genotyping platform for gene detection allowed the assignment of 2930 genes to flow‐sorted chromosomes or arms, confirmed the position of 2545 SNP‐mapped loci, added chromosome or arm allocations to an additional 370 SNP loci, and delineated pericentromeric regions for chromosomes 2H to 7H. Marker order has been improved and map resolution has been increased by almost 20%. These increased precision outcomes enable more optimized SNP selection for marker‐assisted breeding and support association genetic analysis and map‐based cloning. It will also improve the anchoring of DNA sequence scaffolds and the barley physical map to the genetic map.


BMC Genomics | 2008

Coupling amplified DNA from flow-sorted chromosomes to high-density SNP mapping in barley

Hana Šimková; Jan T. Svensson; Pascal Condamine; Eva Hřibová; Pavla Suchánková; Prasanna R. Bhat; Jan Bartoš; Jan Šafář; Timothy J. Close; Jaroslav Doležel

BackgroundFlow cytometry facilitates sorting of single chromosomes and chromosome arms which can be used for targeted genome analysis. However, the recovery of microgram amounts of DNA needed for some assays requires sorting of millions of chromosomes which is laborious and time consuming. Yet, many genomic applications such as development of genetic maps or physical mapping do not require large DNA fragments. In such cases time-consuming de novo sorting can be minimized by utilizing whole-genome amplification.ResultsHere we report a protocol optimized in barley including amplification of DNA from only ten thousand chromosomes, which can be isolated in less than one hour. Flow-sorted chromosomes were treated with proteinase K and amplified using Phi29 multiple displacement amplification (MDA). Overnight amplification in a 20-microlitre reaction produced 3.7 – 5.7 micrograms DNA with a majority of products between 5 and 30 kb. To determine the purity of sorted fractions and potential amplification bias we used quantitative PCR for specific genes on each chromosome. To extend the analysis to a whole genome level we performed an oligonucleotide pool assay (OPA) for interrogation of 1524 loci, of which 1153 loci had known genetic map positions. Analysis of unamplified genomic DNA of barley cv. Akcent using this OPA resulted in 1426 markers with present calls. Comparison with three replicates of amplified genomic DNA revealed >99% concordance. DNA samples from amplified chromosome 1H and a fraction containing chromosomes 2H – 7H were examined. In addition to loci with known map positions, 349 loci with unknown map positions were included. Based on this analysis 40 new loci were mapped to 1H.ConclusionThe results indicate a significant potential of using this approach for physical mapping. Moreover, the study showed that multiple displacement amplification of flow-sorted chromosomes is highly efficient and representative which considerably expands the potential of chromosome flow sorting in plant genomics.


PLOS Computational Biology | 2013

Combinatorial Pooling Enables Selective Sequencing of the Barley Gene Space

Stefano Lonardi; Denisa Duma; Matthew Alpert; Francesca Cordero; Marco Beccuti; Prasanna R. Bhat; Yonghui Wu; Gianfranco Ciardo; Burair Alsaihati; Yaqin Ma; Steve Wanamaker; Josh Resnik; Serdar Bozdag; MingCheng Luo; Timothy J. Close

For the vast majority of species – including many economically or ecologically important organisms, progress in biological research is hampered due to the lack of a reference genome sequence. Despite recent advances in sequencing technologies, several factors still limit the availability of such a critical resource. At the same time, many research groups and international consortia have already produced BAC libraries and physical maps and now are in a position to proceed with the development of whole-genome sequences organized around a physical map anchored to a genetic map. We propose a BAC-by-BAC sequencing protocol that combines combinatorial pooling design and second-generation sequencing technology to efficiently approach denovo selective genome sequencing. We show that combinatorial pooling is a cost-effective and practical alternative to exhaustive DNA barcoding when preparing sequencing libraries for hundreds or thousands of DNA samples, such as in this case gene-bearing minimum-tiling-path BAC clones. The novelty of the protocol hinges on the computational ability to efficiently compare hundred millions of short reads and assign them to the correct BAC clones (deconvolution) so that the assembly can be carried out clone-by-clone. Experimental results on simulated data for the rice genome show that the deconvolution is very accurate, and the resulting BAC assemblies have high quality. Results on real data for a gene-rich subset of the barley genome confirm that the deconvolution is accurate and the BAC assemblies have good quality. While our method cannot provide the level of completeness that one would achieve with a comprehensive whole-genome sequencing project, we show that it is quite successful in reconstructing the gene sequences within BACs. In the case of plants such as barley, this level of sequence knowledge is sufficient to support critical end-point objectives such as map-based cloning and marker-assisted breeding.


BMC Genomics | 2008

Detection and validation of single feature polymorphisms in cowpea (Vigna unguiculata L. Walp) using a soybean genome array

Sayan Das; Prasanna R. Bhat; Chinta Sudhakar; Jeffrey D. Ehlers; Steve Wanamaker; Philip A. Roberts; Xinping Cui; Timothy J. Close

BackgroundCowpea (Vigna unguiculata L. Walp) is an important food and fodder legume of the semiarid tropics and subtropics worldwide, especially in sub-Saharan Africa. High density genetic linkage maps are needed for marker assisted breeding but are not available for cowpea. A single feature polymorphism (SFP) is a microarray-based marker which can be used for high throughput genotyping and high density mapping.ResultsHere we report detection and validation of SFPs in cowpea using a readily available soybean (Glycine max) genome array. Robustified projection pursuit (RPP) was used for statistical analysis using RNA as a surrogate for DNA. Using a 15% outlying score cut-off, 1058 potential SFPs were enumerated between two parents of a recombinant inbred line (RIL) population segregating for several important traits including drought tolerance, Fusarium and brown blotch resistance, grain size and photoperiod sensitivity. Sequencing of 25 putative polymorphism-containing amplicons yielded a SFP probe set validation rate of 68%.ConclusionWe conclude that the Affymetrix soybean genome array is a satisfactory platform for identification of some 1000s of SFPs for cowpea. This study provides an example of extension of genomic resources from a well supported species to an orphan crop. Presumably, other legume systems are similarly tractable to SFP marker development using existing legume array resources.


Plant Journal | 2015

Sequencing of 15 622 gene-bearing BACs clarifies the gene-dense regions of the barley genome

María Muñoz-Amatriaín; Stefano Lonardi; Ming-Cheng Luo; Kavitha Madishetty; Jan T. Svensson; Matthew J. Moscou; Steve Wanamaker; Tao Jiang; Andris Kleinhofs; Gary J. Muehlbauer; Roger P. Wise; Nils Stein; Yaqin Ma; Edmundo Rodriguez; Dave Kudrna; Prasanna R. Bhat; Shiaoman Chao; Pascal Condamine; Shane Heinen; Josh Resnik; Rod A. Wing; Heather Witt; Matthew Alpert; Marco Beccuti; Serdar Bozdag; Francesca Cordero; Hamid Mirebrahim; Rachid Ounit; Yonghui Wu; Frank M. You

Summary Barley (Hordeum vulgare L.) possesses a large and highly repetitive genome of 5.1 Gb that has hindered the development of a complete sequence. In 2012, the International Barley Sequencing Consortium released a resource integrating whole‐genome shotgun sequences with a physical and genetic framework. However, because only 6278 bacterial artificial chromosome (BACs) in the physical map were sequenced, fine structure was limited. To gain access to the gene‐containing portion of the barley genome at high resolution, we identified and sequenced 15 622 BACs representing the minimal tiling path of 72 052 physical‐mapped gene‐bearing BACs. This generated ~1.7 Gb of genomic sequence containing an estimated 2/3 of all Morex barley genes. Exploration of these sequenced BACs revealed that although distal ends of chromosomes contain most of the gene‐enriched BACs and are characterized by high recombination rates, there are also gene‐dense regions with suppressed recombination. We made use of published map‐anchored sequence data from Aegilops tauschii to develop a synteny viewer between barley and the ancestor of the wheat D‐genome. Except for some notable inversions, there is a high level of collinearity between the two species. The software HarvEST:Barley provides facile access to BAC sequences and their annotations, along with the barley–Ae. tauschii synteny viewer. These BAC sequences constitute a resource to improve the efficiency of marker development, map‐based cloning, and comparative genomics in barley and related crops. Additional knowledge about regions of the barley genome that are gene‐dense but low recombination is particularly relevant.

Collaboration


Dive into the Prasanna R. Bhat's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Josh Resnik

University of California

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Shiaoman Chao

Agricultural Research Service

View shared research outputs
Researchain Logo
Decentralizing Knowledge