Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Prasanta K. Dash is active.

Publication


Featured researches published by Prasanta K. Dash.


Scientific Reports | 2017

Overexpression of Pea DNA Helicase 45 ( PDH45 ) imparts tolerance to multiple abiotic stresses in chili ( Capsicum annuum L.)

Tagginahalli N. Shivakumara; Rohini Sreevathsa; Prasanta K. Dash; M. S. Sheshshayee; Pradeep K. Papolu; Uma Rao; Narendra Tuteja; M. Udayakumar

Imparting tolerance to abiotic stresses is of global importance as they inflict significant yield losses in field as well as in vegetable crops. Transcriptional activators, including helicases are identified to play a pivotal role in stress mitigation. Helicases, also known as molecular motors, are involved in myriad cellular processes that impart intrinsic tolerance to abiotic stresses in plants. Our study demonstrates the potential of a Pea DNA Helicase 45 (PDH45), in combating multiple abiotic stresses in chili. We harnessed Agrobacterium-mediated in planta transformation strategy for the generation of stable, single copy transgenic events. Precise molecular detection of the transgenes by sqRT-PCR coupled with genomic Southern analysis revealed variation in the integration of PDH45 at distinct loci in independent transgenic events. Characterization of five promising transgenic events showed both improved response to an array of simulated abiotic stresses and enhanced expression of several stress-responsive genes. While survival and recovery of transgenic events were significantly higher under gradual moisture stress conditions, under imposition of moderate stress, the transgenic events exhibited invigorated growth and productivity with concomitant improvement in water use efficiency (WUE). Thus, our study, unequivocally demonstrated the cardinal role of PDH45 in alleviating multiple abiotic stresses in chili.


Frontiers in Plant Science | 2017

Variable Level of Dominance of Candidate Genes Controlling Drought Functional Traits in Maize Hybrids

Ha Van Gioi; Mallana Gowdra Mallikarjuna; Mittal Shikha; Banduni Pooja; Shailendra K. Jha; Prasanta K. Dash; Arunkumar M. Basappa; Raveendra N. Gadag; A. R. Rao; T. Nepolean

Breeding maize for drought tolerance necessitates the knowledge on tolerant genotypes, molecular basis of drought tolerance mechanism, action, and expression pattern of genes. Studying the expression pattern and gene action of candidate genes during drought stress in the hybrids will help in choosing target genes for drought tolerance breeding. In the present investigation, a set of five hybrids and their seven parents with a variable level of tolerance to drought stress was selected to study the magnitude and the direction of 52 drought-responsive candidate genes distributed across various biological functions, viz., stomatal regulation, root development, detoxification, hormone signaling, photosynthesis, and sugar metabolism. The tolerant parents, HKI1105 and CML425, and their hybrid, ADWLH2, were physiologically active under drought stress, since vital parameters viz., chlorophyll, root length and relative water content, were on par with the respective well-watered control. All the genes were up-regulated in ADWLH2, many were down-regulated in HM8 and HM9, and most were down-regulated in PMH1 and PMH3 in the shoots and roots. The nature of the gene action was controlled by the parental combination rather than the parent per se. The differentially expressed genes in all five hybrids explained a mostly non-additive gene action over additivity, which was skewed toward any of the parental lines. Tissue-specific gene action was also noticed in many of the genes. The non-additive gene action is driven by genetic diversity, allele polymorphism, events during gene regulation, and small RNAs under the stress condition. Differential regulation and cross-talk of genes controlling various biological functions explained the basis of drought tolerance in subtropical maize hybrids. The nature of the gene action and the direction of the expression play crucial roles in designing introgression and hybrid breeding programmes to breed drought tolerant maize hybrids.


Frontiers in Plant Science | 2016

Translating the “Banana Genome” to Delineate Stress Resistance, Dwarfing, Parthenocarpy and Mechanisms of Fruit Ripening

Prasanta K. Dash; Rhitu Rai

Evolutionary frozen, genetically sterile and globally iconic fruit “Banana” remained untouched by the green revolution and, as of today, researchers face intrinsic impediments for its varietal improvement. Recently, this wonder crop entered the genomics era with decoding of structural genome of double haploid Pahang (AA genome constitution) genotype of Musa acuminata. Its complex genome decoded by hybrid sequencing strategies revealed panoply of genes and transcription factors involved in the process of sucrose conversion that imparts sweetness to its fruit. Historically, banana has faced the wrath of pandemic bacterial, fungal, and viral diseases and multitude of abiotic stresses that has ruined the livelihood of small/marginal farmers’ and destroyed commercial plantations. Decoding structural genome of this climacteric fruit has given impetus to a deeper understanding of the repertoire of genes involved in disease resistance, understanding the mechanism of dwarfing to develop an ideal plant type, unraveling the process of parthenocarpy, and fruit ripening for better fruit quality. Further, injunction of comparative genomics will usher in integration of information from its decoded genome and other monocots into field applications in banana related but not limited to yield enhancement, food security, livelihood assurance, and energy sustainability. In this mini review, we discuss pre- and post-genomic discoveries and highlight accomplishments in structural genomics, genetic engineering and forward genetic accomplishments with an aim to target genes and transcription factors for translational research in banana.


3 Biotech | 2017

Origin and evolution of group XI secretory phospholipase A2 from flax (Linum usitatissimum) based on phylogenetic analysis of conserved domains

Payal Gupta; Raman Saini; Prasanta K. Dash

Phospholipase A2 (PLA2) belongs to class of lipolytic enzymes (EC 3.1.1.4). Lysophosphatidic acid (LPA) and free fatty acids (FFAs) are the products of PLA2 catalyzed hydrolysis of phosphoglycerides at sn-2 position. LPA and FFA that act as second mediators involved in the development and maturation of plants and animals. Mining of flax genome identified two phospholipase A2 encoding genes, viz., LusPLA2I and LusPLA2II (Linum usitatissimum secretory phospholipase A2). Molecular simulation of LusPLA2s with already characterized plant sPLA2s revealed the presence of conserved motifs and signature domains necessary to classify them as secretory phospholipase A2. Phylogenetic analysis of flax sPLA2 with representative sPLA2s from other organisms revealed that they evolved rapidly via gene duplication/deletion events and shares a common ancestor. Our study is the first report of detailed phylogenetic analysis for secretory phospholipase A2 in flax. Comparative genomic analysis of two LusPLA2s with earlier reported plant sPLA2s, based on their gene architectures, sequence similarities, and domain structures are presented elucidating the uniqueness of flax sPLA2.


bioRxiv | 2018

A strain of an emerging Indian pathotype of Xanthomonas oryzae pv. oryzae defeats the rice bacterial blight resistance gene xa13 without inducing a clade III SWEET gene and is nearly identical to a recent Thai isolate

Sara C. D. Carpenter; Prashant Mishra; Chandrika Ghoshal; Prasanta K. Dash; Li Wang; Samriti Midha; Gouri Shankar Laha; Jagjeet Singh Lore; Wichai Kositratana; Nagendra Kumar Singh; Kuldeep Singh; Prabhu B. Patil; Ricardo Oliva; Sujin Patarapuwadol; Adam J. Bogdanove; Rhitu Rai

The rice bacterial blight pathogen Xanthomonas oryzae pv. oryzae (Xoo) injects transcription activator-like effectors (TALEs) that bind and activate host ‘susceptibility’ (S) genes important for disease. Clade III SWEET genes are major S genes for bacterial blight. The resistance genes xa5, which reduces TALE activity generally, and xa13, a SWEET11 allele not recognized by the cognate TALE, have been effectively deployed. However, strains that defeat both resistance genes individually were recently reported in India and Thailand. To gain insight into the mechanism(s), we completely sequenced the genome of one such strain from each country and examined the encoded TALEs. Strikingly, the two strains are clones, sharing nearly identical TALE repertoires, including a TALE known to activate SWEET11 strongly enough to be effective even when diminished by xa5. We next investigated SWEET gene induction by the Indian strain. The Indian strain induced no clade III SWEET in plants harbouring xa13, indicating a pathogen adaptation that relieves dependence on these genes for susceptibility. The findings open a door to mechanistic understanding of the role SWEET genes play in susceptibility and illustrate the importance of complete genome sequence-based monitoring of Xoo populations in developing varieties with effective disease resistance.


Scientific Reports | 2018

Expression of Cry2Aa, a Bacillus thuringiensis insecticidal protein in transgenic pigeon pea confers resistance to gram pod borer, Helicoverpa armigera

S. B. Singh; Nikhil Ram Kumar; R. Maniraj; R. Lakshmikanth; K. Y. S. Rao; N. Muralimohan; T. Arulprakash; K. Karthik; N. B. Shashibhushan; T. Vinutha; Debasis Pattanayak; Prasanta K. Dash; P. Ananda Kumar; Rohini Sreevathsa

Pigeon pea is an important legume infested by a plethora of insect pests amongst which gram pod borer Helicoverpa armigera is very prominent. Imparting resistance to this insect herbivore is of global importance in attaining food security. Expression of insecticidal crystal proteins (ICP) in diverse crops has led to increased resistance to several pests. We report in this paper, expression of Cry2Aa in transgenic pigeon pea and its effectiveness towards H. armigera by employing Agrobacterium-mediated in planta transformation approach. Approximately 0.8% of T1 generation plants were identified as putative transformants based on screening in the presence of 70 ppm kanamycin as the selection agent. Promising events were further recognized in advanced generations based on integration, expression and bioefficacy of the transgenes. Seven T3 lines (11.8% of the selected T1 events) were categorized as superior as these events demonstrated 80–100% mortality of the challenged larvae and improved ability to prevent damage caused by the larvae. The selected transgenic plants accumulated Cry2Aa in the range of 25–80 µg/g FW. The transgenic events developed in the study can be used in pigeon pea improvement programmes for pod borer resistance.


Journal of Horticultural Science & Biotechnology | 2018

Genetics and molecular mapping of gynoecious (F) locus in cucumber (Cucumis sativus L.)

Gograj Singh Jat; A. D. Munshi; T. K. Behera; Harshwardhan Choudhary; Prasanta K. Dash; Amarnath Ravindran; Shilpi Kumari

Gynoecious is an important economic trait of cucumber for determinant of earliness and yield, yet genetic mechanism is not well understood for this trait. The experiment was conducted using F₂ mapping population by crossing of PPC-2, a gynoecious and parthenocarpic line with Pusa Uday (monoecious and non-parthenocarpic cultivar). Out of 179 SSR markers screened, 39 markers differentiated the gynoecious and monoecious parents. However, only 17 markers were segregating with F₂ mapping population, those were used for genotyping and linkage map analysis and these markers were placed along with F locus on chromosome 6 covering a total distance of 100.4cM. The SSR markers, SSR13251 and UW020605 were found to be closely linked to gynoecious (F) locus at 1.0 and 4.5 cM, respectively. The segregation of F₂ population of PPC-2 × Pusa Uday and GPC-1 × Punjab Naveen and test crosses for sex type herein suggested that single dominant gene controlled the gynoecious sex expression in cucumber particularly in gynoecious genotypes PPC-2 and GPC-1. Therefore, the monogenic dominant nature of gynoecious sex identified in the present experiment and SSR markers closely linked to the F locus will be useful in marker-assisted backcross breeding for transfering gynoecious trait into horticulturally desirable varieties.


Frontiers in chemistry | 2018

Structural, Functional, and Evolutionary Characterization of Major Drought Transcription Factors Families in Maize

Shikha Mittal; Pooja Banduni; Mallana Gowdra Mallikarjuna; A. R. Rao; Prashant Ankur Jain; Prasanta K. Dash; Nepolean Thirunavukkarasu

Drought is one of the major threats to the maize yield especially in subtropical production systems. Understanding the genes and regulatory mechanisms of drought tolerance is important to sustain the yield. Transcription factors (TFs) play a major role in gene regulation under drought stress. In the present study, a set of 15 major TF families comprising 1,436 genes was structurally and functionally characterized. The functional annotation indicated that the genes were involved in ABA signaling, ROS scavenging, photosynthesis, stomatal regulation, and sucrose metabolism. Duplication was identified as the primary force in divergence and expansion of TF families. Phylogenetic relationship was developed for individual TF and combined TF families. Phylogenetic analysis clustered the genes into specific and mixed groups. Gene structure analysis revealed that more number of genes were intron-rich as compared to intron-less. Drought-responsive cis-regulatory elements such as ABREA, ABREB, DRE1, and DRECRTCOREAT have been identified. Expression and interaction analyses identified leaf-specific bZIP TF, GRMZM2G140355, as a potential contributor toward drought tolerance in maize. Protein-protein interaction network of 269 drought-responsive genes belonging to different TFs has been provided. The information generated on structural and functional characteristics, expression, and interaction of the drought-related TF families will be useful to decipher the drought tolerance mechanisms and to breed drought-tolerant genotypes in maize.


Frontiers in chemistry | 2018

Drought Induced Signaling in Rice: Delineating Canonical and Non-canonical Pathways

Prasanta K. Dash; Rhitu Rai; Vandna Rai; Surendra N Pasupalak

Drought induced stress is often a bottleneck of agricultural crop production. Invariably, field crops across all agro-ecological regions succumb to it with an yield penalty. Drought massively affects the growth and harvestable yield in crops and has become an imminent problem necessitating breeding of tolerant crops. It induces myriad changes of biochemical, molecular, and physiological nature that manifest into aberrant plant morphology. The response to drought in plants incites a signaling cascade that involves perception and translation of drought signal leading to concomitant modulation of gene expression and de novo osmolyte synthesis. The intricate patterns of expression of these genes vary from early induction to late responsive genes. While one class of genes codes for products imparting osmotolerance and protection to plants, the second class predominantly modulates target gene expression by an intricate signal transduction mechanism. This review summarizes both canonical and non-canonical cascades of drought stress response in plants, delineating the mechanism in rice (Oryza sativa) and emphasizes hydropenia induced lipid signaling.


Frontiers in chemistry | 2017

Comparative Analysis of CDPK Family in Maize, Arabidopsis, Rice, and Sorghum Revealed Potential Targets for Drought Tolerance Improvement

Shikha Mittal; Mallana Gowdra Mallikarjuna; A. R. Rao; Prashant Ankur Jain; Prasanta K. Dash; Nepolean Thirunavukkarasu

Calcium dependent protein kinases (CDPKs) play significant role in regulation of plant growth and development in response to various stresses including drought. A set of 32 CDPK genes identified in maize were further used for searching of orthologs in the model plant Arabidopsis (72) and major food crops such as rice (78) and sorghum (91). We comprehensively studied the phylogenetic relationship, annotations, gene duplications, gene structure, divergence time, 3-D protein structures and tissue-specific drought induced expression of CDPK genes in all four species. Variation in intron frequency in the studied species was one of the reasons for the functional diversity of CDPK genes to various stress responses. Protein kinase and protein kinase C phosphorylation site domains were the most conserved motifs identified in all species. Four groups were identified from the sequence-based phylogenetic analysis, in which maize CDPKs were clustered in group III. Expression data showed that the CDPK genes were highly expressed in leaf of maize, rice, and sorghum whereas in Arabidopsis the maximum expression was observed in root. The expression assay showed 5, 6, 11, and 9 were the commonly and differentially expressed drought-related orthologous genes in maize, Arabidopsis, rice, and sorghum, respectively. 3-D protein structure were predicted for the nine genes (Arabidopsis: 2, maize: 2, rice: 3, and sorghum: 2) showing differential expression in at least three species. The predicted 3-D structures were further evaluated and validated by Ramachandran plot, ANOLEA, ProSA, and Verify-3D. The superimposed 3-D structure of drought-related orthologous proteins retained similar folding pattern owing to their conserved nature. Functional annotation revealed the involvement of CDPK genes in various pathways such as osmotic homeostasis, cell protection, and root growth. The interactions of CDPK genes in various pathways play crucial role in imparting drought tolerance through different ABA and MAPK signaling cascades. These selected candidate genes could be targeted in development of drought tolerant genotypes in maize, rice, and sorghum through appropriate breeding approaches. Our comparative experiments of CDPK genes could also be extended in the drought stress breeding programmes of the related species.

Collaboration


Dive into the Prasanta K. Dash's collaboration.

Top Co-Authors

Avatar

Rhitu Rai

Indian Council of Agricultural Research

View shared research outputs
Top Co-Authors

Avatar

A. R. Rao

Indian Agricultural Statistics Research Institute

View shared research outputs
Top Co-Authors

Avatar

Mallana Gowdra Mallikarjuna

Indian Agricultural Research Institute

View shared research outputs
Top Co-Authors

Avatar

Payal Gupta

Indian Council of Agricultural Research

View shared research outputs
Top Co-Authors

Avatar

Nepolean Thirunavukkarasu

Indian Agricultural Research Institute

View shared research outputs
Top Co-Authors

Avatar

Rohini Sreevathsa

Indian Council of Agricultural Research

View shared research outputs
Top Co-Authors

Avatar

Shikha Mittal

Indian Agricultural Research Institute

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

A. D. Munshi

Indian Agricultural Research Institute

View shared research outputs
Top Co-Authors

Avatar

Amarnath Ravindran

Indian Agricultural Research Institute

View shared research outputs
Researchain Logo
Decentralizing Knowledge