Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Prashant R. Nambiar is active.

Publication


Featured researches published by Prashant R. Nambiar.


Proceedings of the National Academy of Sciences of the United States of America | 2002

APC-dependent suppression of colon carcinogenesis by PPARγ

Geoffrey D. Girnun; Wendy M. Smith; Stavit Drori; Pasha Sarraf; Elisabetta Mueller; Charis Eng; Prashant R. Nambiar; Daniel W. Rosenberg; Roderick T. Bronson; Winfried Edelmann; Raju Kucherlapati; Frank J. Gonzalez; Bruce M. Spiegelman

Activation of PPARγ by synthetic ligands, such as thiazolidinediones, stimulates adipogenesis and improves insulin sensitivity. Although thiazolidinediones represent a major therapy for type 2 diabetes, conflicting studies showing that these agents can increase or decrease colonic tumors in mice have raised concerns about the role of PPARγ in colon cancer. To analyze critically the role of this receptor, we have used mice heterozygous for Pparγ with both chemical and genetic models of this malignancy. Heterozygous loss of PPARγ causes an increase in β-catenin levels and a greater incidence of colon cancer when animals are treated with azoxymethane. However, mice with preexisting damage to Apc, a regulator of β-catenin, develop tumors in a manner insensitive to the status of PPARγ. These data show that PPARγ can suppress β-catenin levels and colon carcinogenesis but only before damage to the APC/β-catenin pathway. This finding suggests a potentially important use for PPARγ ligands as chemopreventative agents in colon cancer.


Cancer Research | 2005

CD4+CD25+ Regulatory Lymphocytes Induce Regression of Intestinal Tumors in ApcMin/+ Mice

Susan E. Erdman; Jane J. Sohn; Varada P. Rao; Prashant R. Nambiar; Zhongming Ge; James G. Fox; David B. Schauer

Colorectal cancer in humans results from sequential genetic changes in intestinal epithelia commencing with inactivation of the APC tumor suppressor gene. Roles for host immunity in epithelial tumorigenesis are poorly understood. It has been previously shown that CD4+CD25+ lymphocytes inhibit colitis-associated epithelial tumors in Rag-deficient mice. Here we show that addition of CD4+CD25+ lymphocytes in ApcMin/+ mice reduces multiplicity of epithelial adenomas. Interleukin-10 was required in regulatory cells for therapeutic effect. Recipients of regulatory cells showed increased apoptosis and down-regulation of cyclooxygenase-2 within tumors coincident with tumor regression. These data suggest a role for regulatory lymphocytes in epithelial homeostasis in the ApcMin/+ mouse model of intestinal polyposis. Similarities with cancer of the breast, prostate, lung, and other sites raise the possibility of broader roles for regulatory lymphocytes in prevention and treatment of epithelial cancers in humans.


Cancer Research | 2008

Genetic Deletion of mPGES-1 Suppresses Intestinal Tumorigenesis

Masako Nakanishi; David C. Montrose; Patsy Clark; Prashant R. Nambiar; Glenn S. Belinsky; Kevin P. Claffey; Daigen Xu; Daniel W. Rosenberg

Elevated levels of prostaglandin E(2) (PGE(2)) are often found in colorectal cancers. Thus, nonsteroidal anti-inflammatory drugs, including selective cyclooxygenase-2 (COX-2) inhibitors, are among the most promising chemopreventive agents for colorectal cancer. However, their long-term use is restricted by the occurrence of adverse events believed to be associated with a global reduction in prostaglandin production. In the present study, we evaluated the chemopreventive efficacy of targeting the terminal synthase microsomal PGE(2) synthase 1 (mPGES-1), which is responsible for generating PGE(2), in two murine models of intestinal cancer. We report for the first time that genetic deletion of mPGES-1 in Apc-mutant mice results in marked and persistent suppression of intestinal cancer growth by 66%, whereas suppression of large adenomas (>3 mm) was almost 95%. This effect occurred despite loss of Apc heterozygosity and beta-catenin activation. However, we found that mPGES-1 deficiency was associated with a disorganized vascular pattern within primary adenomas as determined by CD31 immunostaining. We also examined the effect of mPGES-1 deletion on carcinogen-induced colon cancer. The absence of mPGES-1 reduced the size and number of preneoplastic aberrant crypt foci (ACF). Importantly, mPGES-1 deletion also blocked the nuclear accumulation of beta-catenin in ACF, confirming that beta-catenin is a critical target of PGE(2) procarcinogenic signaling in the colon. Our data show the feasibility of targeting mPGES-1 for cancer chemoprevention with the potential for improved tolerability over traditional nonsteroidal anti-inflammatory drugs and selective COX-2 inhibitors.


Cancer Research | 2006

Innate Immune Inflammatory Response against Enteric Bacteria Helicobacter hepaticus Induces Mammary Adenocarcinoma in Mice

Varada P. Rao; Theofilos Poutahidis; Zhongming Ge; Prashant R. Nambiar; Chakib Boussahmain; Yan Yan Wang; Bruce H. Horwitz; James G. Fox; Susan E. Erdman

Inflammation associated with bacterial infections is a risk factor for cancers in humans, yet its role in breast cancer remains poorly understood. We have previously shown that innate immune inflammatory response against intestinal bacteria is sufficient to induce colon cancer. Here we report that infecting Rag2-deficient C57BL/6 Apc(Min/+) mice with an intestinal bacterial pathogen, Helicobacter hepaticus, significantly promotes mammary carcinoma in females and enhances intestinal adenoma multiplicity by a tumor necrosis factor alpha (TNFalpha)-dependent mechanism. The mammary and intestinal tumor development as well as the increase in proinflammatory mediators is suppressed by adoptive transfer of interleukin 10-competent CD4+CD45RB(lo)CD25+ regulatory (T(R)) cells. Furthermore, prior exposure of donor mice to H. hepaticus significantly enhances antitumor potency of their T(R) cells. Interestingly, these microbially experienced T(R) cells suppress tumorigenesis more effectively in recipient mice irrespective of their tumor etiology. These data suggest that infections with enteric pathogens enhance T(R)-cell potency and protect against epithelial cancers later in life, potentially explaining paradoxical increases in cancer risk in developed countries having more stringent hygiene practices. The possibility that dysregulated gut microbial infections in humans may lead to cancer in anatomically distant organs, such as breast, highlights the need for novel immune-based strategies in cancer prevention and treatment.


Journal of Clinical Microbiology | 2007

Enterohepatic Helicobacter Species Are Prevalent in Mice from Commercial and Academic Institutions in Asia, Europe, and North America

Nancy S. Taylor; Shilu Xu; Prashant R. Nambiar; Floyd E. Dewhirst; James G. Fox

ABSTRACT The discovery of Helicobacter hepaticus and its role in hepatitis, hepatocellular carcinoma, typhlocolitis, and lower-bowel carcinoma in murine colonies was followed by the isolation and characterization of other Helicobacter spp. involved in enterohepatic disease. Colonization of mouse colonies with members of the family Helicobacteriaceae has become an increasing concern for the research community. From 2001 to 2005, shipments of selected gift mice from other institutions and mice received from specified commercial vendors were screened for Helicobacter spp. by culture of cecal tissue. The identities of the isolates were confirmed by genus-specific PCR, followed by species-specific PCR and restriction fragment length polymorphism analysis. Sequencing of the 16S rRNA gene was performed if the species identity was not apparent. The survey included 79 mice from 34 sources: 2 commercial sources and 16 research sources from the United States and 1 commercial source and 15 research sources from Canada, Europe, or Asia. Helicobacter spp. were cultured from the ceca of 62 of 79 mice. No Helicobacter spp. were found in mice from advertised Helicobacter-free production areas from two U.S. vendors. Multiple Helicobacter spp. were found in mice from one vendors acknowledged Helicobacter-infected production area. The European commercial vendor had mice infected with novel Helicobacter sp. strain MIT 96-1001. Of the U.S. academic institutions, 6 of 16 (37%) had mice infected with Helicobacter hepaticus; but monoinfection with H. bilis, H. mastomyrinus, H. rodentium, and MIT 96-1001 was also encountered, as were mice infected simultaneously with two Helicobacter spp. Non-U.S. academic institutions had mice that were either monoinfected with H. hepaticus, monoinfected with seven other Helicobacter spp., or infected with a combination of Helicobacter spp. This survey indicates that 30 of 34 (88%) commercial and academic institutions in Canada, Europe, Asia, Australia, and the United States have mouse colonies infected with Helicobacter spp. Mice from 20 of the 34 institutions (59%) were most commonly colonized with H. hepaticus alone or in combination with other Helicobacter spp. These results indicate that a broad range of Helicobacter spp. infect mouse research colonies. The potential impact of these organisms on in vivo experiments continues to be an important issue for mice being used for biomedical research.


Infection and Immunity | 2005

Cytolethal Distending Toxin Is Essential for Helicobacter hepaticus Colonization in Outbred Swiss Webster Mice

Zhongming Ge; Yan Feng; Mark T. Whary; Prashant R. Nambiar; Shilu Xu; Vivian Ng; Nancy S. Taylor; James G. Fox

ABSTRACT Helicobacter hepaticus, which induces chronic hepatitis and typhlocolitis in susceptible mouse strains, produces a cytolethal distending toxin (CDT) consisting of CdtA, CdtB, and CdtC. A cdtB-deficient H. hepaticus isogenic mutant (HhcdtBm7) was generated and characterized for colonization parameters in four intestinal regions (jejunum, ileum, cecum, and colon) of outbred Swiss Webster (SW) mice. Inactivation of the cdtB gene abolished the ability of HhcdtBm7 to colonize female mice at both 8 and 16 weeks postinfection (wpi), whereas HhcdtBm7 colonized all of four intestinal regions of three of five males at 8 wpi and then was eliminated by 16 wpi. Wild-type (WT) H. hepaticus was detected in the corresponding intestinal regions of both male and female mice at 8 and 16 wpi; however, colonization levels of WT H. hepaticus in the cecum and colon of male mice were approximately 1,000-fold higher than in females (P < 0.0079) at 16 wpi. Infection with WT H. hepaticus, but not HhcdtBm7, at 8 wpi was associated with significantly increased mRNA level of ileal and cecal gamma interferon (IFN-γ) in females (P < 0.016 and 0.031 between WT H. hepaticus-infected and sham-dosed females, respectively). In contrast, the mRNA levels of IFN-γ were significantly higher in the colon (P < 0.0079) and trended to be higher in the cecum (P < 0.15) in the HhcdtBm7-colonized male mice versus the sham-dosed controls at 8 wpi. In addition, mRNA levels of ileal IFN-γ were significantly higher in the control females than males at 8 wpi (P < 0.016). There were significantly higher Th1-associated immunoglobulin G2a (IgG2a), Th2-associated IgG1 and mucosal IgA (P < 0.002, 0.002, 0.002, respectively) responses in the mice infected with WT H. hepaticus when compared to HhcdtBm7 at 16 wpi. Colonic interleukin-10 (IL-10) expressions at 16 wpi were significantly lower in both female and male mice colonized by WT H. hepaticus or in males transiently colonized through 8 wpi by HhcdtBm7 versus control mice (P < 0.0159). These lines of evidence indicate that (i) H. hepaticus CDT plays a crucial role in the persistent colonization of H. hepaticus in SW mice; (ii) SW female mice are more resistant to H. hepaticus colonization than male mice; (iii) there was persistent colonization of WT H. hepaticus in cecum, colon, and jejunum but only transient colonization of H. hepaticus in the ileum of female mice; (iv) H. hepaticus colonization was associated with down-regulation of colonic IL-10 production.


Cancer Research | 2004

Genetic signatures of High- and Low-Risk Aberrant Crypt Foci in a Mouse Model of Sporadic Colon Cancer

Prashant R. Nambiar; Masako Nakanishi; Rishi R. Gupta; Evelyn Cheung; Ali Firouzi; Xiao Jun Ma; Christopher Flynn; Mei Dong; Kishore Guda; Joel B. Levine; Rajiv Raja; Luke E.K. Achenie; Daniel W. Rosenberg

To determine whether cancer risk is related to histopathological features of preneoplastic aberrant crypt foci (ACF), gene expression analysis was performed on ACF from two mouse strains with differing tumor sensitivity to the colonotropic carcinogen, azoxymethane. ACF from sensitive A/J mice were considered at high risk, whereas ACF from resistant AKR/J mice were considered at low risk for tumorigenesis. A/J and AKR/J mice received weekly injections of azoxymethane (10 mg/kg body weight), and frozen colon sections were prepared 6 weeks later. Immunohistochemistry was performed using biomarkers associated with colon cancer, including adenomatous polyposis coli, β-catenin, p53, c-myc, cyclin D1, and proliferating cell nuclear antigen. Hyperplastic ACF, dysplastic ACF, microadenomas, adjacent normal-appearing epithelium, and vehicle-treated colons were laser captured, and RNA was linearly amplified (LCM-LA) and subjected to cDNA microarray-based expression analysis. Patterns of gene expression were identified using adaptive centroid algorithm. ACF from low- and high-risk colons were not discriminated by immunohistochemistry, with the exception of membrane staining of β-catenin. To develop genetic signatures that predict cancer risk, LCM-LA RNA from ACF was hybridized to cDNA arrays. Of 4896 interrogated genes, 220 clustered into six broad clusters. A total of 226 and 202 genes was consistently altered in lesions from A/J and AKR/J mice, respectively. Although many alterations were common to both strains, expression profiles stratified high- and low- risk lesions. These data demonstrate that ACF with distinct tumorigenic potential have distinguishing molecular features. In addition to providing insight into colon cancer promotion, our data identify potential biomarkers for determining colon cancer risk in humans.


Cancer Research | 2006

Proinflammatory CD4+CD45RBhi Lymphocytes Promote Mammary and Intestinal Carcinogenesis in ApcMin/+ Mice

Varada P. Rao; Theofilos Poutahidis; Zhongming Ge; Prashant R. Nambiar; Bruce H. Horwitz; James G. Fox; Susan E. Erdman

Cancers of breast and bowel are increasingly frequent in humans. Chronic inflammation is known to be a risk factor for these malignancies, yet cellular and molecular mechanisms linking inflammation and carcinogenesis remain poorly understood. Here, we apply a widely used T-cell transfer paradigm, involving adoptive transfer of proinflammatory CD4+CD45RBhi (TE) cells to induce inflammatory bowel disease (IBD) in mice, to investigate roles of inflammation on carcinogenesis in the ApcMin/+ mouse model of intestinal polyposis. We find that transfer of TE cells significantly increases adenoma multiplicity and features of malignancy in recipient ApcMin/+ mice. Surprisingly, we find that female ApcMin/+ recipients of TE cells also rapidly develop mammary tumors. Both intestinal polyposis and mammary adenocarcinoma are abolished by cotransfer of anti-inflammatory CD4+CD45RBlo regulatory lymphocytes or by neutralization of key proinflammatory cytokine tumor necrosis factor-α. Lastly, down-regulation of cyclooxygenase-2 and c-Myc expression is observed coincident with tumor regression. These findings define a novel mouse model of inflammation-driven mammary carcinoma and suggest that epithelial carcinogenesis can be mitigated by anti-inflammatory cells and cytokines known to regulate IBD in humans and mice. (Cancer Res 2006; 66(1): 57-61)


Infection and Immunity | 2007

Trefoil Family Factor 2 Is Expressed in Murine Gastric and Immune Cells and Controls both Gastrointestinal Inflammation and Systemic Immune Responses

Evelyn A. Kurt-Jones; LuCheng Cao; Frantisek Sandor; Arlin B. Rogers; Mark T. Whary; Prashant R. Nambiar; Anna M. Cerny; Glennice N. Bowen; Jing Yan; Shigeo Takaishi; Alfred L. Chi; George W. Reed; JeanMarie Houghton; James G. Fox; Timothy C. Wang

ABSTRACT Trefoil family factor 2 (TFF2), also known as spasmolytic peptide, is a low-molecular-weight protein that is upregulated in gastric tissues infected with Helicobacter or having other inflammatory conditions, but a precise function is yet to be elucidated. The role of TFF2 in the development of gastritis, colitis, and inflammatory cytokine responses was examined both in vivo and in vitro using wild-type and TFF2 knockout mice. TFF2 knockout and wild-type mice were infected with Helicobacter felis (H. felis) to induce gastritis. Colitis was induced in TFF2 knockout and wild-type mice by administering dextran sodium sulfate (DSS) in drinking water. Histopathology, clinical disease (colitis), and antibody levels (H. felis) were examined. TFF2 expression in tissues was determined by reverse transcriptase PCR, and the inflammatory and proliferative responses of TFF2-expressing macrophages and spleen cells were examined by cytokine enzyme-linked immunosorbent assay, thymidine incorporation, and gene array studies. TFF2 knockout mice have increased susceptibility to H. felis-induced gastritis, with enhanced gastric inflammation. They were also more susceptible to DSS-induced colitis, with prolonged colonic hemorrhage and persistent weight loss. Remarkably, TFF2 expression was not limited to the gastrointestinal tract, as suggested in previous studies, but was also present in macrophages and lymphocytes. The inflammatory and proliferative responses of these immune cell types were dysregulated in TFF2 knockout mice. TFF2−/− cells were hyperresponsive to interleukin 1 beta stimulation but showed normal responses to lipopolysaccharide, suggesting a specific role for TFF2 in interleukin 1 receptor but not Toll-like receptor 4 signaling via their Toll-interleukin 1 resistance domains. TFF2−/− lymphocytes also produced higher levels of interleukin 2 than wild-type cells. Thus, TFF2 was expressed in the gastrointestinal cells and in immune cells and was a negative regulator of gastrointestinal inflammation and immune cell cytokine responses. Our studies suggest that TFF2 not only controls gastrointestinal repair but also regulates mononuclear cell inflammatory responses.


Journal of Toxicology and Environmental Health | 2006

Immunomodulatory effects of in vitro exposure to organochlorines on T-cell proliferation in marine mammals and mice.

Chiharu Mori; Brenda Morsey; Milton Levin; Prashant R. Nambiar; Sylvain De Guise

Marine mammals bioaccumulate various environmental contaminants such as organochlorines (OCs), which biomagnify via the food web. While the immunomodulatory effects of individual OCs have been studied, the effects of mixtures are not well understood. The immunomodulatory effects of polychlorinated biphenyl (PCB) 138, 153, 169, and 180 as well as 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) and all possible mixtures were examined in marine mammals and mice. Lymphocyte proliferation was significantly modulated by OCs in all species tested, mostly by non-coplanar PCBs, as shown using regression analyses. Correlation analyses showed significant correlations (interpreted as additive effects) between OCs in mice, killer whales, and Steller sea lions. Nonadditive synergistic and antagonistic interactions between OCs were detected in most of the species tested. Toxic equivalency (TEQ) values used for OC toxicity assessment failed to predict the immunomodulatory effects measured in mice and marine mammals. The commonly used mouse model failed to predict immunomodulatory effects in other species. Clustering data suggested that phylogeny does not predict toxicity of OCs. Overall, our data suggest the presence of species-specific sensitivities to different mixtures, in which OCs interactions may be complex and that may exert their effects through dioxinlike or dioxin-independent pathways. Lastly, lymphocyte proliferation, an important part of adaptive immunity, was significantly modulated in mice and marine mammals, suggesting the possibility of increased susceptibility to diseases. These findings will be useful to better characterize the risk associated with OC exposure and possibly lead to new conservation and management strategies.

Collaboration


Dive into the Prashant R. Nambiar's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Daniel W. Rosenberg

University of Connecticut Health Center

View shared research outputs
Top Co-Authors

Avatar

Kishore Guda

University of Connecticut

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Susan E. Erdman

Massachusetts Institute of Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Zhongming Ge

Massachusetts Institute of Technology

View shared research outputs
Top Co-Authors

Avatar

Bruce H. Horwitz

Brigham and Women's Hospital

View shared research outputs
Top Co-Authors

Avatar

Glenn S. Belinsky

University of Connecticut Health Center

View shared research outputs
Top Co-Authors

Avatar

Mei Dong

University of Connecticut

View shared research outputs
Researchain Logo
Decentralizing Knowledge