Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Pratap Rama is active.

Publication


Featured researches published by Pratap Rama.


Journal of Fuel Cell Science and Technology | 2010

An x-ray tomography based lattice Boltzmann simulation study on gas diffusion layers of polymer electrolyte fuel cells

Pratap Rama; Yu Liu; Rui Chen; Hossein Ostadi; Kyle Jiang; Xiaoxian Zhang; Rosemary Fisher; Michael Jeschke

This work reports a feasibility study into the combined full morphological reconstruction of fuel cell structures using X-ray computed micro- and nanotomography and lattice Boltzmann modeling to simulate fluid flow at pore scale in porous materials. This work provides a description of how the two techniques have been adapted to simulate gas movement through a carbon paper gas diffusion layer (GDL). The validation work demonstrates that the difference between the simulated and measured absolute permeability of air is 3%. The current study elucidates the potential to enable improvements in GDL design, material composition, and cell design to be realized through a greater understanding of the nano- and microscale transport processes occurring within the polymer electrolyte fuel cell.


Proceedings of the Institution of Mechanical Engineers, Part A: Journal of Power and Energy | 2008

A review of performance degradation and failure modes for hydrogen-fuelled polymer electrolyte fuel cells

Pratap Rama; Rui Chen; John Andrews

Abstract A qualitative account of the causes and effects of performance degradation and failure in hydrogen-fuelled polymer electrolyte fuel cells (PEFCs) is given in the present review. The purpose of the review is to establish a backbone understanding of the phenomenological processes that occur within the PEFC, how they interact, how they are influenced through elements of design, manufacturing and operation, and ultimately how they result in performance degradation and cell failure. In the current work, 22 common faults are identified which are induced by 48 frequent causes. The major PEFC components considered here that are susceptible to faults are the polymer electrolyte-based membrane, the anode and cathode catalyst layers, gas diffusion and microporous layers, seals and the bipolar plate. Faults pertaining to these components can cause irreversible increases in activation, mass transportation, ohmic and fuel efficiency losses, or indeed cause catastrophic cell failure.


Transport in Porous Media | 2012

Calculating the anisotropic permeability of porous media using the lattice Boltzmann method and X-ray computed tomography

Yuan Gao; Xiaoxian Zhang; Pratap Rama; Ying Liu; Rui Chen; Hossein Ostadi; Kyle Jiang

A lattice Boltzmann (LB) method is developed in this article in a combination with X-ray computed tomography to simulate fluid flow at pore scale in order to calculate the anisotropic permeability of porous media. The binary 3D structures of porous materials were acquired by X-ray computed tomography at a resolution of a few microns, and the reconstructed 3D porous structures were then combined with the LB model to calculate their permeability tensor based on the simulated velocity field at pore scale. The flow is driven by pressure gradients imposed in different directions. Two porous media, one gas diffusion porous layer used in fuel cells industry and glass beads, were simulated. For both media, we investigated the relationship between their anisotropic permeability and porosity. The results indicate that the LB model is efficient to simulate pore-scale flow in porous media, and capable of giving a good estimate of the anisotropic permeability for both media. The calculated permeability is in good agreement with the measured date; the relationship between the permeability and porosity for the two media is well described by the Kozeny–Carman equation. For the gas diffusion layer, the simulated results showed that its permeability in one direction could be one order of magnitude higher than those in other two directions. The simulation was based on the single-relaxation time LB model, and we showed that by properly choosing the relaxation time, it could give similar results to those obtained using the multiple-relaxation time (MRT) LB method, but with only one third of the computational costs of MRTLB model.


Computers & Mathematics With Applications | 2013

Lattice Boltzmann simulation of water and gas flow in porous gas diffusion layers in fuel cells reconstructed from micro-tomography

Yuan Gao; Xiaoxian Zhang; Pratap Rama; Rui Chen; Hossein Ostadi; Kyle Jiang

The porous gas diffusion layers (GDLs) are key components in hydrogen fuel cells. During their operation the cells produce water at the cathode, and to avoid flooding, the water has to be removed out of the cells. How to manage the water is therefore an important issue in fuel cell design. In this paper we investigated water flow in the GDLs using a combination of the lattice Boltzmann method and X-ray computed tomography at the micron scale. Water flow in the GDL depends on water-air surface tension and hydrophobicity. To correctly represent the water-gas surface tension, the formations of water droplets in air were simulated, and the water-gas surface tension was obtained by fitting the simulated results to the Young-Laplace formula. The hydrophobicity is represented by the water-gas-fabric contact angle. For a given water-gas surface tension the value of the contact angle was determined by simulating the formations of water droplets on a solid surface with different hydrophobicity. We then applied the model to simulate water intrusion into initially dry GDLs driven by a pressure gradient in attempts to understand the impact of hydrophobicity on water distribution in the GDLs. The structures of the GDL were acquired by X-ray micro-tomography at a resolution of 1.7 microns. The simulated results revealed that with an increase in hydrophobicity, water transport in GDLs changes from piston-flow to channelled flow.


Energy & Fuels | 2010

Multiscale Modeling of Single-Phase Multicomponent Transport in the Cathode Gas Diffusion Layer of a Polymer Electrolyte Fuel Cell

Pratap Rama; Yu Liu; Rui Chen; Hossein Ostadi; Kyle Jiang; Yuan Gao; Xiaoxian Zhang; Rosemary Fisher; Michael Jeschke

This research reports a feasibility study into multi-scale polymer electrolyte fuel cell (PEFC) modelling through the simulation of macroscopic flow in the multi-layered cell via 1D electrochemical modelling, and the simulation of microscopic flow in the cathode gas diffusion layer (GDL) via 3D single-phase multi-component lattice Boltzmann (SPMC-LB) modelling. The heterogeneous porous geometry of the carbon-paper GDL is digitally reconstructed for the SPMC-LB model using X-ray computer micro-tomography. Boundary conditions at the channel and catalyst layer interfaces for the SPMC-LB simulations such as specie partial pressures and through-plane flow rates are determined using the validated 1D electrochemical model, which is based on the general transport equation (GTE) and volume-averaged structural properties of the GDL. The calculated pressure profiles from the two models are cross-validated to verify the SPMC-LB technique. The simulations reveal a maximum difference of 2.4% between the thickness-averaged pressures calculated by the two techniques, which is attributable to the actual heterogeneity of the porous GDL structure. 1 Department of Aeronautical and Automotive Engineering, Loughborough University, Leicestershire LE11 3TU, United Kingdom 2 Corresponding author: [email protected] 3 Department of Mechanical Engineering, University of Birmingham, Birmingham B15 2TT, United Kingdom 4 Department of Engineering, University of Liverpool, Liverpool L69 3GQ, United Kingdom 5 Technical Fibre Products Ltd., Kendal LA9 6PZ, United Kingdom 2


Proceedings of the Institution of Mechanical Engineers, Part A: Journal of Power and Energy | 2006

Polymer electrolyte fuel cell transport mechanisms: a universal modelling framework from fundamental theory:

Pratap Rama; Rui Chen; R.H. Thring

Abstract A mathematical multi-species modelling framework for polymer electrolyte fuel cells (PEFCs) is presented on the basis of fundamental molecular theory. Characteristically, the resulting general transport equation describes transport in concentrated solutions and also explicitly accommodates for multi-species electro-osmotic drag. The multi-species nature of the general transport equation allows for cross-interactions to be considered, rather than relying upon the superimposition of Ficks law to account for the transport of any secondary species in the membrane region such as hydrogen. The presented general transport equation is also used to derive the key transport equations used by the historically prominent PEFC models. Thus, this work bridges the gap that exists between the different modelling philosophies for membrane transport in the literature. The general transport equation is then used in the electrode and membrane regions of the PEFC with available membrane properties from the literature to compare simulated one-dimensional water content curves, which are compared with published data under isobaric and isothermal operating conditions. Previous work is used to determine the composition of the humidified air and fuel supply streams in the gas channels. Finally, the general transport equation is used to simulate the crossover of hydrogen across the membrane for different membrane thicknesses and current densities. The results show that at 353 K, 1 atm, and 1 A/cm2, the nominal membrane thickness for less than 5 mA/cm2equivalent crossover current density is 30 μm. At 3 atm and 353 K, the nominal membrane thickness for the same equivalent crossover current density is about 150 μm and increases further to 175 μm at 383 K with the same pressure. Thin membranes exhibit consistently higher crossover at all practical current densities compared with thicker membranes. At least a 50 per cent decrease in crossover is chieved at all practical current densities, when the membrane thickness is doubled from 50 to 100 μm.


Journal of Fuel Cell Science and Technology | 2012

Inductive Effect on the Fuel Cell Cathode Impedance Spectrum at High Frequencies

Samuel Cruz-Manzo; Rui Chen; Pratap Rama

The high frequency electrochemical impedance measurements with positive imaginary components in the impedance complex plot of a polymer electrolyte fuel cell (PEFC) are attributable to the inductance of the electrical cables of the measurement system. This study demonstrates that the inductive effect of the electrical cables deforms the high frequency region of the cathode impedance spectrum and as such leads to an erroneous interpretation of the electrochemical mechanisms in the cathode catalyst layer (CCL). This study is divided into a theoretical analysis and an experimental analysis. In the theoretical analysis a validated model that accounts for the impedance spectrum of the CCL as reported in the authors’ previous study is applied with experimental impedance data reported in the literature. The results show that the ionic resistance of the CCL electrolyte which skews the oxygen reduction reaction (ORR) current distribution toward the membrane interface is masked in the cathode impedance spectrum by the inductive component. In the experimental analysis cathode experimental impedance spectra were obtained through a three-electrode configuration in the measurement system and with two different electrical cables connected between the electronic load and the PEFC. The results agree with the theoretical analysis and also show that the property of causality in the Kramers-Kronig mathematical relations for electrochemical impedance spectroscopy (EIS) measurements is violated by the external inductance of the measurement cables. Therefore the experimental data presenting inductance at high frequencies do not represent the physics and chemistry of the PEFC. The study demonstrates that a realistic understanding of factors governing EIS measurements can only be gained by applying fundamental modeling which accounts for underlying electrochemical phenomena and experimental observations in a complementary manner.


Journal of Fuel Cell Science and Technology | 2012

An Improved MRT Lattice Boltzmann Model for Calculating Anisotropic Permeability of Compressed and Uncompressed Carbon Cloth Gas Diffusion Layers Based on X-Ray Computed Micro-Tomography

Yuan Gao; Xiaoxian Zhang; Pratap Rama; Rui Chen; Hossein Ostadi; Kyle Jiang

The gas diffusion layers (GDLs) in polymer proton exchange membrane fuel cells are under compression in operation. Understanding and then being able to quantify the reduced ability of GDLs to conduct gases due to the compression is hence important in fuel cell design. In this paper, we investigated the change of anisotropic permeability of GDLs under different compressions using the improved multiple-relaxation time (MRT) lattice Boltzmann model and X-ray computed micro-tomography. The binary 3D X-ray images of GDLs under different compressions were obtained using the technologies we developed previously, and the permeability of the GDLs in both through-plane and inplane directions was calculated by simulating gas flow at micron scale through the 3D images. The results indicated that, in comparison with the single-relaxation time (SRT) lattice Boltzmann model commonly used in the literature, the MRT model is robust and flexible in choosing model parameters. The SRT model can give accurate results only when using a specific relaxation parameter whose value varies with porosity. The simulated results using the MRT model reveal that compression could lead to a significant decrease in permeability in both through-plane and in-plane directions, and that the relationship between the decreased permeability and porosity can be well described by both Kozeny-Carman relation and the equation derived by Tomadakis and Sotirchos (1993, “Ordinary and Transition Rdgime Diffusion in Random Fiber Structure,” AIChE J., 39, pp. 397–412) for porosity in the range from 50% to 85%. Since GDLs compression takes place mainly in the through-plane direction, the results presented in this work could provide an easy way to estimate permeability reduction in both through-plane and in-plane directions when the compressive pressure is known.


Journal of The Electrochemical Society | 2010

The Low Current Electrochemical Mechanisms of the Fuel Cell Cathode Catalyst Layer Through an Impedance Study

Samuel Cruz-Manzo; Pratap Rama; Rui Chen

Based on the fundamental electrode theory and the impedance experimental study, a numerical model to simulate the low current distribution in the time domain and the electrochemical impedance spectra of the cathode catalyst layer (CCL) of polymer electrolyte fuel cells (PEFCs) has been developed in this study. The model development consists of two stages: to establish the fundamental equations for the low current distribution in the CCL in the time domain and to resolve the fundamental theory in the frequency domain. It was validated by comparing the simulated impedance of the CCL directly against the impedance data measured from an operational test cell. The simulated frequency response agrees well with the experimental data. The model was applied in the time domain to simulate the effects of the proton resistance and the double-layer capacitance across the CCL on the transitory and steady-state current distribution. The results showed that the model has established a backbone understanding of how the low current electrochemical mechanisms relate to the electrochemical impedance spectra of the CCL. It establishes a wider scope to relate the electrochemical impedance data to the fundamental theory of PEFCs.


Proceedings of the Institution of Mechanical Engineers, Part A: Journal of Power and Energy | 2005

A polymer electrolyte membrane fuel cell model with multi-species input

Pratap Rama; Rui Chen; R.H. Thring

Abstract With the emerging realization that low temperature, low pressure polymer electrolyte membrane fuel cell (PEMFC) technologies can realistically serve for power-generation of any scale, the value of comprehensive simulation models becomes equally evident. Many models have been successfully developed over the last two decades. One of the fundamental limitations among these models is that up to only three constituent species have been considered in the dry pre-humidified anode and cathode inlet gases, namely oxygen and nitrogen for the cathode and hydrogen, carbon dioxide, and carbon monoxide for the anode. In order to extend the potential of theoretical study and to bring the simulation closer towards reality, in this research, a 1D steady-state, low temperature, isothermal, isobaric PEMFC model has been developed. The model accommodates multi-component diffusion in the porous electrodes and therefore offers the potential to further investigate the effects of contaminants such as carbon monoxide on cell performance. The simulated model polarizations agree well with published experimental data. It opens a wider scope to address the remaining limitations in the future with further developments.

Collaboration


Dive into the Pratap Rama's collaboration.

Top Co-Authors

Avatar

Rui Chen

Loughborough University

View shared research outputs
Top Co-Authors

Avatar

Hossein Ostadi

University of Birmingham

View shared research outputs
Top Co-Authors

Avatar

Kyle Jiang

University of Birmingham

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Yu Liu

Loughborough University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Ying Liu

Loughborough University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge