Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Pratiek N. Matkar is active.

Publication


Featured researches published by Pratiek N. Matkar.


Arteriosclerosis, Thrombosis, and Vascular Biology | 2015

Therapeutic Angiogenesis by Ultrasound-Mediated MicroRNA-126-3p Delivery.

Wei J. Cao; Joshua Rosenblat; Nathan C Roth; Michael A. Kuliszewski; Pratiek N. Matkar; Dmitriy Rudenko; Christine Liao; Paul J Lee; Howard Leong-Poi

Objective—MicroRNAs are involved in many critical functions, including angiogenesis. Ultrasound-targeted microbubble destruction (UTMD) is a noninvasive technique for targeted vascular transfection of plasmid DNA and may be well suited for proangiogenic microRNA delivery. We aimed to investigate UTMD of miR-126-3p for therapeutic angiogenesis in chronic ischemia. Approach and Results—The angiogenic potential of miR-126-3p was tested in human umbilical vein endothelial cells in vitro. UTMD of miR-126-3p was tested in vivo in Fischer-344 rats before and after chronic left femoral artery ligation, evaluating target knockdown, miR-126-3p and miR-126-5p expression, phosphorylated Tie2 levels, microvascular perfusion, and vessel density. In vitro, miR-126-3p–transfected human umbilical vein endothelial cells showed repression of sprouty-related protein-1 and phosphatidylinositol-3-kinase regulatory subunit 2, negative regulators of vascular endothelial growth factor and angiopoietin-1 signaling, increased phosphorylated Tie2 mediated by knockdown of phosphatidylinositol-3-kinase regulatory subunit 2 and greater angiogenic potential mediated by both vascular endothelial growth factor/vascular endothelial growth factor R2 and angiopoietin-1/Tie2 effects. UTMD of miR-126-3p resulted in targeted vascular transfection, peaking early after delivery and lasting for >3 days, and resulting in inhibition of sprouty-related protein-1 and phosphatidylinositol-3-kinase regulatory subunit 2, with minimal uptake in remote organs. Finally, UTMD of miR-126-3p to chronic ischemic hindlimb muscle resulted in improved perfusion, vessel density, enhanced arteriolar formation, pericyte coverage, and phosphorylated Tie2 levels, without affecting miR-126-5p or delta-like 1 homolog levels. Conclusions—UTMD of miR-126 results in improved tissue perfusion and vascular density in the setting of chronic ischemia by repressing sprouty-related protein-1 and phosphatidylinositol-3-kinase regulatory subunit 2 and enhancing vascular endothelial growth factor and angiopoietin-1 signaling, with no effect on miR-126-5p. UTMD is a promising platform for microRNA delivery, with applications for therapeutic angiogenesis.


Journal of Biological Chemistry | 2015

The Essential Autophagy Gene ATG7 Modulates Organ Fibrosis via Regulation of Endothelial-to-Mesenchymal Transition

Krishna Singh; Fina Lovren; Yi Pan; Adrian Quan; Azza Ramadan; Pratiek N. Matkar; Mehroz Ehsan; Paul Sandhu; Laura E. Mantella; Nandini Gupta; Hwee Teoh; Matteo Parotto; Arata Tabuchi; Wolfgang M. Kuebler; Mohammed Al-Omran; Toren Finkel; Subodh Verma

Background: Endothelial-to-mesenchymal transition (EndMT) is implicated in the development of organ fibrosis. Results: Loss of the autophagy gene ATG7 promotes EndMT and up-regulates TGFβ signaling and the associated pro-fibrotic genes. Endothelial-specific ATG7 knock-out mice exhibited increased bleomycin-induced pulmonary fibrosis. Conclusion: ATG7 is a novel regulator of EndMT-induced organ fibrosis. Significance: Intact endothelial autophagy prevents aberrant EndMT and represents a potential target to limit organ fibrosis. Pulmonary fibrosis is a progressive disease characterized by fibroblast proliferation and excess deposition of collagen and other extracellular matrix components. Although the origin of fibroblasts is multifactorial, recent data implicate endothelial-to-mesenchymal transition as an important source of fibroblasts. We report herein that loss of the essential autophagy gene ATG7 in endothelial cells (ECs) leads to impaired autophagic flux accompanied by marked changes in EC architecture, loss of endothelial, and gain of mesenchymal markers consistent with endothelial-to-mesenchymal transition. Loss of ATG7 also up-regulates TGFβ signaling and key pro-fibrotic genes in vitro. In vivo, EC-specific ATG7 knock-out mice exhibit a basal reduction in endothelial-specific markers and demonstrate an increased susceptibility to bleomycin-induced pulmonary fibrosis and collagen accumulation. Our findings help define the role of endothelial autophagy as a potential therapeutic target to limit organ fibrosis, a condition for which presently there are no effective available treatments.


Molecular therapy. Nucleic acids | 2013

Optimization of Ultrasound-mediated Anti-angiogenic Cancer Gene Therapy

Hiroko Fujii; Pratiek N. Matkar; Christine Liao; Dmitriy Rudenko; Paul J Lee; Michael A. Kuliszewski; Gérald J. Prud'homme; Howard Leong-Poi

Ultrasound-targeted microbubble destruction (UTMD) can be used to deliver silencing gene therapy to tumors. We hypothesized that UTMD would be effective in suppressing angiogenesis within tumors, and that modulation of the ultrasound pulsing intervals (PI) during UTMD would affect the magnitude of target knockdown. We performed UTMD of vascular endothelial growth factor receptor-2 (VEGFR2) short hairpin (sh)RNA plasmid in an heterotopic mammary adenocarcinoma model in rats, evaluating PIs of 2, 5, 10, and 20 seconds. We demonstrated that UTMD with a PI of 10 seconds resulted in the greatest knockdown of VEGFR2 by PCR, immunostaining, western blotting, smaller tumor volumes and perfused areas, and lower tumor microvascular blood volume (MBV) and flow by contrast-enhanced ultrasound (CEU) compared with UTMD-treated tumors at 2, 5, and 20 seconds, control tumors, tumors treated with intravenous shRNA plasmid and scrambled plasmid. CEU perfusion assessment using the therapeutic probe demonstrated that tumors were fully replenished with microbubbles within 10 seconds, but incompletely replenished at PI-2 and PI-5 seconds. In conclusion, for anti-VEGFR2 cancer gene therapy by UTMD, PI of 10 seconds results in higher target knockdown and a greater anti-angiogenic effect. Complete replenishment of tumor vasculature with silencing gene-bearing microbubbles in between destructive pulses of UTMD is required to maximize the efficacy of anti-angiogenic cancer gene therapy.


Oncotarget | 2016

Novel regulatory role of neuropilin-1 in endothelial-to-mesenchymal transition and fibrosis in pancreatic ductal adenocarcinoma

Pratiek N. Matkar; Krishna K. Singh; D. Rudenko; Yu Jin Kim; Michael A. Kuliszewski; Gerald J. Prud’homme; David W. Hedley; Howard Leong-Poi

Pancreatic ductal adenocarcinoma (PDAC) is characterized by an intense fibrotic reaction termed tumor desmoplasia, which is in part responsible for its aggressiveness. Endothelial cells have been shown to display cellular plasticity in the form of endothelial-to-mesenchymal transition (EndMT) that serves as an important source of fibroblasts in pathological disorders, including cancer. Angiogenic co-receptor, neuropilin-1 (NRP-1) actively binds TGFβ1, the primary mediator of EndMT and is involved in oncogenic processes like epithelial-to-mesenchymal transition (EMT). NRP-1 and TGFβ1 signaling have been shown to be aberrantly up-regulated in PDAC. We report herein a positive correlation between NRP-1 levels, EndMT and fibrosis in human PDAC xenografts. Loss of NRP-1 in HUVECs limited TGFβ1-induced EndMT as demonstrated by gain of endothelial and loss of mesenchymal markers, while maintaining endothelial cell architecture. Knockdown of NRP-1 down-regulated TGFβ canonical signaling (pSMAD2) and associated pro-fibrotic genes. Overexpression of NRP-1 exacerbated TGFβ1-induced EndMT and up-regulated TGFβ signaling and expression of pro-fibrotic genes. In vivo, loss of NRP-1 attenuated tumor perfusion and size, accompanied by reduction in EndMT and fibrosis. This study defines a previously unrecognized role of NRP-1 in regulating TGFβ1-induced EndMT and fibrosis, and advocates NRP-1 as a therapeutic target to reduce tumor fibrosis and PDAC progression.


International Journal of Vascular Medicine | 2016

Investigation of TGFβ1-Induced Long Noncoding RNAs in Endothelial Cells.

Krishna K. Singh; Pratiek N. Matkar; Adrian Quan; Laura-Eve Mantella; Hwee Teoh; M. Al-Omran; Subodh Verma

Objective. To evaluate the relationship between TGFβ signaling and endothelial lncRNA expression. Methods. Human umbilical vein endothelial cell (HUVECs) lncRNAs and mRNAs were profiled with the Arraystar Human lncRNA Expression Microarray V3.0 after 24 hours of exposure to TGFβ1 (10 ng/mL). Results. Of the 30,584 lncRNAs screened, 2,051 were significantly upregulated and 2,393 were appreciably downregulated (P < 0.05) in response to TGFβ. In the same HUVEC samples, 2,148 of the 26,106 mRNAs screened were upregulated and 1,290 were downregulated. Of these 2,051 differentially expressed upregulated lncRNAs, MALAT1, which is known to be induced by TGFβ in endothelial cells, was the most (~220-fold) upregulated lncRNA. Bioinformatics analyses indicated that the differentially expressed upregulated mRNAs are primarily enriched in hippo signaling, Wnt signaling, focal adhesion, neuroactive ligand-receptor interaction, and pathways in cancer. The most downregulated are notably involved in olfactory transduction, PI3-Akt signaling, Ras signaling, neuroactive ligand-receptor interaction, and apoptosis. Conclusions. This is the first lncRNA and mRNA transcriptome profile of TGFβ-mediated changes in human endothelial cells. These observations may reveal potential new targets of TGFβ in endothelial cells and novel therapeutic avenues for cardiovascular disease-associated endothelial dysfunction.


Journal of the American Heart Association | 2017

Cardiac Overexpression of S100A6 Attenuates Cardiomyocyte Apoptosis and Reduces Infarct Size After Myocardial Ischemia‐Reperfusion

Azadeh Mofid; Nadav S. Newman; Paul J Lee; Cynthia Abbasi; Pratiek N. Matkar; Dmitriy Rudenko; Michael A. Kuliszewski; Hao H. Chen; Kolsoom Afrasiabi; James N. Tsoporis; Anthony O. Gramolini; Kim A. Connelly; Thomas G. Parker; Howard Leong-Poi

Background Cardiomyocyte‐specific transgenic mice overexpressing S100A6, a member of the family of EF‐hand calcium‐binding proteins, develop less cardiac hypertrophy, interstitial fibrosis, and myocyte apoptosis after permanent coronary ligation, findings that support S100A6 as a potential therapeutic target after acute myocardial infarction. Our purpose was to investigate S100A6 gene therapy for acute myocardial ischemia‐reperfusion. Methods and Results We first performed in vitro studies to examine the effects of S100A6 overexpression and knockdown in rat neonatal cardiomyocytes. S100A6 overexpression improved calcium transients and protected against apoptosis induced by hypoxia‐reoxygenation via enhanced calcineurin activity, whereas knockdown of S100A6 had detrimental effects. For in vivo studies, human S100A6 plasmid or empty plasmid was delivered to the left ventricular myocardium by ultrasound‐targeted microbubble destruction in Fischer‐344 rats 2 days prior to a 30‐minute ligation of the left anterior descending coronary artery followed by reperfusion. Control animals received no therapy. Pretreatment with S100A6 gene therapy yielded a survival advantage compared to empty‐plasmid and nontreated controls. S100A6‐pretreated animals had reduced infarct size and improved left ventricular systolic function, with less myocyte apoptosis, attenuated cardiac hypertrophy, and less cardiac fibrosis. Conclusions S100A6 overexpression by ultrasound‐targeted microbubble destruction helps ameliorate myocardial ischemia‐reperfusion, resulting in lower mortality and improved left ventricular systolic function post–ischemia‐reperfusion via attenuation of apoptosis, reduction in cardiac hypertrophy, and reduced infarct size. Our results indicate that S100A6 is a potential therapeutic target for acute myocardial infarction.


Advances in Experimental Medicine and Biology | 2016

Microbubbles and Ultrasound: Therapeutic Applications in Diabetic Nephropathy

Wei J. Cao; Pratiek N. Matkar; Hao H. Chen; Azadeh Mofid; Howard Leong-Poi

Diabetic nephropathy (DN) remains one of the most common causes of end-stage renal disease. Current therapeutic strategies aiming at optimization of serum glucose and blood pressure are beneficial in early stage DN, but are unable to fully prevent disease progression. With the limitations of current medical therapies and the shortage of available donor organs for kidney transplantation, the need for novel therapies to address DN complications and prevent progression towards end-stage renal failure is crucial. The development of ultrasound technology for non-invasive and targeted in-vivo gene delivery using high power ultrasound and carrier microbubbles offers great therapeutic potential for the prevention and treatment of DN. The promising results from preclinical studies of ultrasound-mediated gene delivery (UMGD) in several DN animal models suggest that UMGD offers a unique, non-invasive platform for gene- and cell-based therapies targeted against DN with strong clinical translation potential.


Biomolecules | 2017

Friends Turned Foes: Angiogenic Growth Factors beyond Angiogenesis

Pratiek N. Matkar; Ramya Ariyagunarajah; Howard Leong-Poi; Krishna K Singh

Angiogenesis, the formation of new blood vessels from pre-existing ones is a biological process that ensures an adequate blood flow is maintained to provide the cells with a sufficient supply of nutrients and oxygen within the body. Numerous soluble growth factors and inhibitors, cytokines, proteases as well as extracellular matrix proteins and adhesion molecules stringently regulate the multi-factorial process of angiogenesis. The properties and interactions of key angiogenic molecules such as vascular endothelial growth factors (VEGFs), fibroblast growth factors (FGFs) and angiopoietins have been investigated in great detail with respect to their molecular impact on angiogenesis. Since the discovery of angiogenic growth factors, much research has been focused on their biological actions and their potential use as therapeutic targets for angiogenic or anti-angiogenic strategies in a context-dependent manner depending on the pathologies. It is generally accepted that these factors play an indispensable role in angiogenesis. However, it is becoming increasingly evident that this is not their only role and it is likely that the angiogenic factors have important functions in a wider range of biological and pathological processes. The additional roles played by these molecules in numerous pathologies and biological processes beyond angiogenesis are discussed in this review.


Expert Opinion on Biological Therapy | 2016

Prospect of ultrasound-mediated gene delivery in cardiovascular applications

Hao H. Chen; Pratiek N. Matkar; Kolsoom Afrasiabi; Michael A. Kuliszewski; Howard Leong-Poi

ABSTRACT Introduction: The field of regenerative medicine has evolved over the years, investigating gene and stem/progenitor cell therapies to help address the increasing burden of cardiovascular disease (CVD). While the lack of success of gene therapy in clinical trials has dampened enthusiasm, the search continues for a successful and translatable gene therapy strategy for CVD. Ultrasound-mediated gene delivery (UMGD) is a non-invasive technique for gene delivery that utilizes gene-bearing carrier microbubbles and high power ultrasound to facilitate transfection in vivo. Many pre-clinical studies have shown benefit in animal models of CVD, but this has yet to be translated to human applications. Areas covered: In this review, the basic principles of UMGD will be examined along with an overview of pre-clinical studies to date in CVD, focusing on cardiac and vascular applications and key findings. In addition, the potential path to the clinical translation of UMGD is discussed. Expert opinion: Ultrasound-mediated gene delivery holds promise as a non-invasive technique for gene delivery in CVD, with the ability to deliver multiple genes with repeated deliveries over time. If the substantial hurdles to clinical translation can be overcome, UMGD may prove to be a key aspect in the success of cardiovascular gene therapy in the future.


Frontiers in Pharmacology | 2018

Valproic Acid Induces Endothelial-to-Mesenchymal Transition-Like Phenotypic Switching

Shamini Murugavel; Antoinette Bugyei-Twum; Pratiek N. Matkar; Husain Al-Mubarak; Hao H. Chen; Mohamed Adam; Shubha Jain; Tanya Narang; Rawand Abdin; Mohammad Qadura; Kim A. Connelly; Howard Leong-Poi; Krishna Singh

Valproic acid (VPA), a histone deacetylase (HDAC) inhibitor, is a widely used anticonvulsant drug that is currently undergoing clinical evaluation for anticancer therapy due to its anti-angiogenic potential. Endothelial cells (ECs) can transition into mesenchymal cells and this form of EC plasticity is called endothelial-to-mesenchymal transition (EndMT), which is widely implicated in several pathologies including cancer and organ fibrosis. However, the effect of VPA on EC plasticity and EndMT remains completely unknown. We report herein that VPA-treatment significantly inhibits tube formation, migration, nitric oxide production, proliferation and migration in ECs. A microscopic evaluation revealed, and qPCR, immunofluorescence and immunoblotting data confirmed EndMT-like phenotypic switching as well as an increased expression of pro-fibrotic genes in VPA-treated ECs. Furthermore, our data confirmed important and regulatory role played by TGFβ-signaling in VPA-induced EndMT. Our qPCR array data performed for 84 endothelial genes further supported our findings and demonstrated 28 significantly and differentially regulated genes mainly implicated in angiogenesis, endothelial function, EndMT and fibrosis. We, for the first time report that VPA-treatment associated EndMT contributes to the VPA-associated loss of endothelial function. Our data also suggest that VPA based therapeutics may exacerbate endothelial dysfunction and EndMT-related phenotype in patients undergoing anticonvulsant or anticancer therapy, warranting further investigation.

Collaboration


Dive into the Pratiek N. Matkar's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

D. Rudenko

St. Michael's Hospital

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Adrian Quan

St. Michael's Hospital

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Krishna Singh

East Tennessee State University

View shared research outputs
Top Co-Authors

Avatar

Hao H. Chen

St. Michael's Hospital

View shared research outputs
Top Co-Authors

Avatar

Hwee Teoh

St. Michael's Hospital

View shared research outputs
Researchain Logo
Decentralizing Knowledge