Praveen Awasthi
Council of Scientific and Industrial Research
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Praveen Awasthi.
Gene | 2015
Irshad Ahmad Rather; Praveen Awasthi; Vidushi Mahajan; Yashbir S. Bedi; Ram A. Vishwakarma; Sumit G. Gandhi
Pathogenesis-related (PR) proteins are involved in biotic and abiotic stress responses of plants and are grouped into 17 families (PR-1 to PR-17). PR-5 family includes proteins related to thaumatin and osmotin, with several members possessing antimicrobial properties. In this study, a PR-5 gene showing a high degree of homology with osmotin-like protein was isolated from sweet basil (Ocimum basilicum L.). A complete open reading frame consisting of 675 nucleotides, coding for a precursor protein, was obtained by PCR amplification. Based on sequence comparisons with tobacco osmotin and other osmotin-like proteins (OLPs), this protein was named ObOLP. The predicted mature protein is 225 amino acids in length and contains 16 cysteine residues that may potentially form eight disulfide bonds, a signature common to most PR-5 proteins. Among the various abiotic stress treatments tested, including high salt, mechanical wounding and exogenous phytohormone/elicitor treatments; methyl jasmonate (MeJA) and mechanical wounding significantly induced the expression of ObOLP gene. The coding sequence of ObOLP was cloned and expressed in a bacterial host resulting in a 25kDa recombinant-HIS tagged protein, displaying antifungal activity. The ObOLP protein sequence appears to contain an N-terminal signal peptide with signatures of secretory pathway. Further, our experimental data shows that ObOLP expression is regulated transcriptionally and in silico analysis suggests that it may be post-transcriptionally and post-translationally regulated through microRNAs and post-translational protein modifications, respectively. This study appears to be the first report of isolation and characterization of osmotin-like protein gene from O. basilicum.
Bioinformation | 2010
Sumit G. Gandhi; Praveen Awasthi; Yashbir S. Bedi
Simple sequence repeats (SSRs) are present abundantly in most eukaryotic genomes. They affect several cellular processes like chromatin organization, regulation of gene activity, DNA repair, DNA recombination, etc. Though considerable data exists on using nuclear SSRs to infer phylogenetic relationships, the potential of chloroplast microsatellites (cpSSR), in this regard, remains largely unexplored. In the present study we probe various nucleotide repeat motifs (NRMs) / types of SSRs present in chloroplast genomes (cpDNA) of 12 species belonging to Brassicaceae family. NRMs show a non-random distribution in coding and non-coding compartments of cpDNA. As expected, trinucleotide repeats are more common in coding regions while other repeat motifs are prominent in non-coding DNA. Total numbers of SSRs in coding region show little variation between species while considerable variation is exhibited by SSRs in non-coding regions. Finally, we have designed universal primers that yield polymorphic amplicons from all 12 species. Our analysis also suggests that amplicon length polymorphism shows no significant relationship with sequence based phylogeny of SSRs in cpDNA of Brassicaceae family.
Journal of Genetics | 2016
Praveen Awasthi; Vidushi Mahajan; Vijay Lakshmi Jamwal; Nitika Kapoor; Shafaq Rasool; Yashbir S. Bedi; Sumit G. Gandhi
Flavonoids are an important class of secondary metabolites that play various roles in plants such as mediating defense, floral pigmentation and plant–microbe interaction. Flavonoids are also known to possess antioxidant and antimicrobial activities. Coleus forskohlii (Willd.) Briq. (Lamiaceae) is an important medicinal herb with a diverse metabolic profile, including production of a flavonoid, genkwanin. However, components of the flavonoid pathway have not yet been studied in this plant. Chalcone synthase (CHS) catalyses the first committed step of flavonoid biosynthetic pathway. Full-length cDNA, showing homology with plant CHS gene was isolated from leaves of C. forskohlii and named CfCHS (GenBank accession no. KF643243). Theoretical translation of CfCHS nucleotide sequence shows that it encodes a protein of 391 amino acids with a molecular weight of 42.75 kDa and pI 6.57. Expression analysis of CfCHS in different tissues and elicitor treatments showed that methyl jasmonate (MeJA) strongly induced its expression. Total flavonoids content and antioxidant activity of C. forskohlii also got enhanced in response to MeJA, which correlated with increased CfCHS expression. Induction of CfCHS by MeJA suggest its involvement in production of flavonoids, providing protection from microbes during herbivory or mechanical wounding. Further, our in silico predictions and experimental data suggested that CfCHS may be posttranscriptionally regulated by miR34.
Frontiers in Plant Science | 2016
Praveen Awasthi; Ajai Prakash Gupta; Yashbir S. Bedi; Ram A. Vishwakarma; Sumit G. Gandhi
Cytochrome P450 monooxygenases (CYP450s) are known to play important roles in biosynthesis of all secondary metabolites, including flavonoids. Despite this, few CYP450s have been functionally characterized in model plants and roles of fewer CYP450s are known in non-model, medicinal, and aromatic plants. Our study in Coleus forskohlii indicates that flavone synthase (CYP93B) and flavonoid 3′ monooxygenase (CYP706C) are key enzymes positioned at a metabolic junction, to execute the biosynthesis of different sub-classes of flavonoids (flavones, flavonol, anthocynanin, isoflavones etc.) from a common precursor. Such branch points are favored targets for artificially modulating the metabolic flux toward specific metabolites, through genetic manipulation or use of elicitors that differentially impact the expression of branch point genes. Genkwanin, the only flavone reported from C. forskohlii, is known to possess anti-inflammatory activity. It is biosynthesized from the general flavonoid precursor: naringenin. Two differentially expressed cytochrome P450 genes (CfCYP93B, CfCYP706C), exhibiting maximum expression in leaf tissues, were isolated from C. forskohlii. Mannitol treatment resulted in increased expression of CfCYP93B and decrease in expression of CfCYP706C. Metabolite quantification data showed that genkwanin content increased and anthocyanin levels decreased in response to mannitol treatment. Alignment, phylogenetic analysis, modeling, and molecular docking analysis of protein sequences suggested that CfCYP93B may be involved in conversion of naringenin to flavones (possibly genkwanin via apigenin), while CfCYP706C may act on common precursors of flavonoid metabolism and channel the substrate toward production of flavonols or anthocynanins. Decrease in expression of CfCYP706C and increase in accumulation of genkwanin suggested that mannitol treatment may possibly lead to accumulation of genkwanin via suppression of a competitive branch of flavonoids in C. forskohlii.
AMB Express | 2017
Ankita Magotra; Manjeet Kumar; Manoj Kushwaha; Praveen Awasthi; Chand Raina; Ajai Prakash Gupta; Bhahwal Ali Shah; Sumit G. Gandhi; Asha Chaubey
Present study relates to the effect of valproic acid, an epigenetic modifier on the metabolic profile of Aspergillus fumigatus (GA-L7), an endophytic fungus isolated from Grewia asiatica L. Seven secondary metabolites were isolated from A. fumigatus (GA-L7) which were identified as: pseurotin A, pseurotin D, pseurotin F2, fumagillin, tryprostatin C, gliotoxin and bis(methylthio)gliotoxin. Addition of valproic acid in the growth medium resulted in the alteration of secondary metabolic profile with an enhanced production of a metabolite, fumiquinazoline C by tenfolds. In order to assess the effect of valproic acid on the biosynthetic pathway of fumiquinazoline C, we studied the expression of the genes involved in its biosynthesis, both in the valproic acid treated and untreated control culture. The results revealed that all the genes i.e. Afua_6g 12040, Afua_6g 12050, Afua_6g 12060, Afua_6g 12070 and Afua_6g 12080, involved in the biosynthesis of fumiquinazoline C were overexpressed significantly by 7.5, 8.8, 3.4, 5.6 and 2.1 folds respectively, resulting in overall enhancement of fumiquinazoline C production by about tenfolds.
Cogent Biology | 2016
Praveen Awasthi; Vijay Lakshmi Jamwal; Nitika Kapoor; Shafaq Rasool
Abstract Flavonoids are important secondary metabolites in plants. Chalcone synthase (CHS) catalyzes the first committed step in the flavonoids biosynthesis. CHS belongs to type ΙΙΙ polyketide synthases that are known for their broad substrate specificity and catalytic potential toward a wide range of thioesters, to produce diverse novel polyketides of pharmaceutical importance. In this study, an in silico approach was used to understand the structure and function of CHS protein from an important medicinal plant Coleus forskohlii. A homology model of CfCHS was built and docking studies were carried out using 25 ligands. Best four docked ligands in proposed binding pocket of CfCHS were: Cinnamoyl CoA, 2-Carbamoylbenzoyl CoA, Benzoyl CoA and p-Coumaroyl CoA. Cys 164, His 304, and Asn 337 were found to be catalytic residues of CfCHS. Further two important residues, Phe 216 and Phe 266, were found to be the gatekeeper residues involved in π–π interaction with ligands. Present study revealed broad spectrum substrate profile of CfCHS and important key residues involved in substrate binding. This is the first report of homology modeling and docking analysis of CHS from C. forskohlii.
Journal of Biotechnology | 2017
Richa Sharma; Vijaylakshmi Jamwal; Varun P. Singh; Priya Wazir; Praveen Awasthi; Deepika Singh; Ram A. Vishwakarma; Sumit G. Gandhi; Asha Chaubey
Streptomyces species are amongst the most exploited microorganisms due to their ability to produce a plethora of secondary metabolites with bioactive potential, including several well known drugs. They are endowed with immense unexplored potential and substantial efforts are required for their isolation as well as characterization for their bioactive potential. Unexplored niches and extreme environments are host to diverse microbial species. In this study, we report Streptomyces lavendulae ACR-DA1, isolated from extreme cold deserts of the North Western Himalayas, which produces a macrolactone antibiotic, valinomycin. Valinomycin is a K+ ionophoric non-ribosomal cyclodepsipeptide with a broad range of bioactivities including antibacterial, antifungal, antiviral and cytotoxic/anticancer activities. Production of valinomycin by the strain S. lavendulae ACR-DA1 was studied under different fermentation conditions like fermentation medium, temperature and addition of biosynthetic precursors. Synthetic medium at 10°C in the presence of precursors i.e. valine and pyruvate showed enhanced valinomycin production. In order to assess the impact of various elicitors, expression of the two genes viz. vlm1 and vlm2 that encode components of heterodimeric valinomycin synthetase, was analyzed using RT-PCR and correlated with quantity of valinomycin using LC-MS/MS. Annelid, bacterial and yeast elicitors increased valinomycin production whereas addition of fungal and plant elicitors down regulated the biosynthetic genes and reduced valinomycin production. This study is also the first report of valinomycin biosynthesis by Streptomyces lavendulae.
Industrial Crops and Products | 2015
Vidushi Mahajan; Irshad Ahmad Rather; Praveen Awasthi; Rajneesh Anand; Sumeet Gairola; Siya Ram Meena; Yashbir S. Bedi; Sumit G. Gandhi
Acta Biologica Hungarica | 2012
Praveen Awasthi; Irshad Ahmad; Sumit G. Gandhi; Yashbir S. Bedi
Journal of Plant Biochemistry and Biotechnology | 2018
Praveen Awasthi; Vidushi Mahajan; Vijay Lakshmi Jamwal; Rekha Chouhan; Nitika Kapoor; Yashbir S. Bedi; Sumit G. Gandhi