Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Praveen F. Cherukuri is active.

Publication


Featured researches published by Praveen F. Cherukuri.


Nucleic Acids Research | 2004

CDD: a Conserved Domain Database for protein classification

John B. Anderson; Praveen F. Cherukuri; Carol DeWeese-Scott; Lewis Y. Geer; Marc Gwadz; Siqian He; David I. Hurwitz; John D. Jackson; Zhaoxi Ke; Christopher J. Lanczycki; Cynthia A. Liebert; Chunlei Liu; Fu Lu; Gabriele H. Marchler; Mikhail Mullokandov; Benjamin A. Shoemaker; Vahan Simonyan; James S. Song; Paul A. Thiessen; Roxanne A. Yamashita; Jodie J. Yin; Dachuan Zhang; Stephen H. Bryant

The Conserved Domain Database (CDD) is the protein classification component of NCBIs Entrez query and retrieval system. CDD is linked to other Entrez databases such as Proteins, Taxonomy and PubMed®, and can be accessed at http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=cdd. CD-Search, which is available at http://www.ncbi.nlm.nih.gov/Structure/cdd/wrpsb.cgi, is a fast, interactive tool to identify conserved domains in new protein sequences. CD-Search results for protein sequences in Entrez are pre-computed to provide links between proteins and domain models, and computational annotation visible upon request. Protein–protein queries submitted to NCBIs BLAST search service at http://www.ncbi.nlm.nih.gov/BLAST are scanned for the presence of conserved domains by default. While CDD started out as essentially a mirror of publicly available domain alignment collections, such as SMART, Pfam and COG, we have continued an effort to update, and in some cases replace these models with domain hierarchies curated at the NCBI. Here, we report on the progress of the curation effort and associated improvements in the functionality of the CDD information retrieval system.


Nature Genetics | 2011

TTC21B contributes both causal and modifying alleles across the ciliopathy spectrum

Erica E. Davis; Qi Zhang; Qin Liu; Bill H. Diplas; Lisa Davey; Jane Hartley; Corinne Stoetzel; Katarzyna Szymanska; Gokul Ramaswami; Clare V. Logan; Donna M. Muzny; Alice C. Young; David A. Wheeler; Pedro Cruz; Margaret Morgan; Lora Lewis; Praveen F. Cherukuri; Baishali Maskeri; Nancy F. Hansen; James C. Mullikin; Robert W. Blakesley; Gerard G. Bouffard; Gabor Gyapay; Susanne Rieger; Burkhard Tönshoff; Ilse Kern; Neveen A. Soliman; Thomas J. Neuhaus; Kathryn J. Swoboda; Hülya Kayserili

Ciliary dysfunction leads to a broad range of overlapping phenotypes, collectively termed ciliopathies. This grouping is underscored by genetic overlap, where causal genes can also contribute modifier alleles to clinically distinct disorders. Here we show that mutations in TTC21B, which encodes the retrograde intraflagellar transport protein IFT139, cause both isolated nephronophthisis and syndromic Jeune asphyxiating thoracic dystrophy. Moreover, although resequencing of TTC21B in a large, clinically diverse ciliopathy cohort and matched controls showed a similar frequency of rare changes, in vivo and in vitro evaluations showed a significant enrichment of pathogenic alleles in cases (P < 0.003), suggesting that TTC21B contributes pathogenic alleles to ∼5% of ciliopathy cases. Our data illustrate how genetic lesions can be both causally associated with diverse ciliopathies and interact in trans with other disease-causing genes and highlight how saturated resequencing followed by functional analysis of all variants informs the genetic architecture of inherited disorders.


Genome Research | 2009

The ClinSeq Project: Piloting large-scale genome sequencing for research in genomic medicine

Leslie G. Biesecker; James C. Mullikin; Flavia M. Facio; Clesson Turner; Praveen F. Cherukuri; Robert W. Blakesley; Gerard G. Bouffard; Peter S. Chines; Pedro Cruz; Nancy F. Hansen; Jamie K. Teer; Baishali Maskeri; Alice C. Young; Teri A. Manolio; Alexander F. Wilson; Toren Finkel; Paul M. Hwang; Andrew E. Arai; Alan T. Remaley; Vandana Sachdev; Robert D. Shamburek; Richard O. Cannon; Eric D. Green

ClinSeq is a pilot project to investigate the use of whole-genome sequencing as a tool for clinical research. By piloting the acquisition of large amounts of DNA sequence data from individual human subjects, we are fostering the development of hypothesis-generating approaches for performing research in genomic medicine, including the exploration of issues related to the genetic architecture of disease, implementation of genomic technology, informed consent, disclosure of genetic information, and archiving, analyzing, and displaying sequence data. In the initial phase of ClinSeq, we are enrolling roughly 1000 participants; the evaluation of each includes obtaining a detailed family and medical history, as well as a clinical evaluation. The participants are being consented broadly for research on many traits and for whole-genome sequencing. Initially, Sanger-based sequencing of 300-400 genes thought to be relevant to atherosclerosis is being performed, with the resulting data analyzed for rare, high-penetrance variants associated with specific clinical traits. The participants are also being consented to allow the contact of family members for additional studies of sequence variants to explore their potential association with specific phenotypes. Here, we present the general considerations in designing ClinSeq, preliminary results based on the generation of an initial 826 Mb of sequence data, the findings for several genes that serve as positive controls for the project, and our views about the potential implications of ClinSeq. The early experiences with ClinSeq illustrate how large-scale medical sequencing can be a practical, productive, and critical component of research in genomic medicine.


American Journal of Human Genetics | 2010

Compound Heterozygosity for Loss-of-Function Lysyl-tRNA Synthetase Mutations in a Patient with Peripheral Neuropathy

Heather M. McLaughlin; Reiko Sakaguchi; Cuiping Liu; Takao Igarashi; Davut Pehlivan; Kristine Chu; Ram Iyer; Pedro Cruz; Praveen F. Cherukuri; Nancy F. Hansen; James C. Mullikin; Leslie G. Biesecker; Thomas E. Wilson; Victor Ionasescu; Garth A. Nicholson; Charles Searby; Kevin Talbot; J. M. Vance; Stephan Züchner; Kinga Szigeti; James R. Lupski; Ya-Ming Hou; Eric D. Green; Anthony Antonellis

Charcot-Marie-Tooth (CMT) disease comprises a genetically and clinically heterogeneous group of peripheral nerve disorders characterized by impaired distal motor and sensory function. Mutations in three genes encoding aminoacyl-tRNA synthetases (ARSs) have been implicated in CMT disease primarily associated with an axonal pathology. ARSs are ubiquitously expressed, essential enzymes responsible for charging tRNA molecules with their cognate amino acids. To further explore the role of ARSs in CMT disease, we performed a large-scale mutation screen of the 37 human ARS genes in a cohort of 355 patients with a phenotype consistent with CMT. Here we describe three variants (p.Leu133His, p.Tyr173SerfsX7, and p.Ile302Met) in the lysyl-tRNA synthetase (KARS) gene in two patients from this cohort. Functional analyses revealed that two of these mutations (p.Leu133His and p.Tyr173SerfsX7) severely affect enzyme activity. Interestingly, both functional variants were found in a single patient with CMT disease and additional neurological and non-neurological sequelae. Based on these data, KARS becomes the fourth ARS gene associated with CMT disease, indicating that this family of enzymes is specifically critical for axon function.


PLOS Genetics | 2011

Whole-Exome Sequencing Identifies Homozygous AFG3L2 Mutations in a Spastic Ataxia-Neuropathy Syndrome Linked to Mitochondrial m-AAA Proteases

Tyler Mark Pierson; David Adams; Florian Bonn; Paola Martinelli; Praveen F. Cherukuri; Jamie K. Teer; Nancy F. Hansen; Pedro Cruz; Robert W. Blakesley; Gretchen Golas; Justin Y. Kwan; Anthony D. Sandler; Karin Fuentes Fajardo; Thomas C. Markello; Cynthia J. Tifft; Craig Blackstone; Elena I. Rugarli; Thomas Langer; William A. Gahl; Camilo Toro

We report an early onset spastic ataxia-neuropathy syndrome in two brothers of a consanguineous family characterized clinically by lower extremity spasticity, peripheral neuropathy, ptosis, oculomotor apraxia, dystonia, cerebellar atrophy, and progressive myoclonic epilepsy. Whole-exome sequencing identified a homozygous missense mutation (c.1847G>A; p.Y616C) in AFG3L2, encoding a subunit of an m-AAA protease. m-AAA proteases reside in the mitochondrial inner membrane and are responsible for removal of damaged or misfolded proteins and proteolytic activation of essential mitochondrial proteins. AFG3L2 forms either a homo-oligomeric isoenzyme or a hetero-oligomeric complex with paraplegin, a homologous protein mutated in hereditary spastic paraplegia type 7 (SPG7). Heterozygous loss-of-function mutations in AFG3L2 cause autosomal-dominant spinocerebellar ataxia type 28 (SCA28), a disorder whose phenotype is strikingly different from that of our patients. As defined in yeast complementation assays, the AFG3L2Y616C gene product is a hypomorphic variant that exhibited oligomerization defects in yeast as well as in patient fibroblasts. Specifically, the formation of AFG3L2Y616C complexes was impaired, both with itself and to a greater extent with paraplegin. This produced an early-onset clinical syndrome that combines the severe phenotypes of SPG7 and SCA28, in additional to other “mitochondrial” features such as oculomotor apraxia, extrapyramidal dysfunction, and myoclonic epilepsy. These findings expand the phenotype associated with AFG3L2 mutations and suggest that AFG3L2-related disease should be considered in the differential diagnosis of spastic ataxias.


Nature Genetics | 2011

Exon capture analysis of G protein-coupled receptors identifies activating mutations in GRM3 in melanoma.

Todd D. Prickett; Xiaomu Wei; Isabel Cardenas-Navia; Jamie K. Teer; Jimmy Lin; Vijay Walia; Jared J. Gartner; Jiji Jiang; Praveen F. Cherukuri; Alfredo A. Molinolo; Michael A. Davies; Jeffrey E. Gershenwald; Katherine Stemke-Hale; Steven A. Rosenberg; Elliott H. Margulies; Yardena Samuels

G protein-coupled receptors (GPCRs), the largest human gene family, are important regulators of signaling pathways. However, knowledge of their genetic alterations is limited. In this study, we used exon capture and massively parallel sequencing methods to analyze the mutational status of 734 GPCRs in melanoma. This investigation revealed that one family member, GRM3, was frequently mutated and that one of its mutations clustered within one position. Biochemical analysis of GRM3 alterations revealed that mutant GRM3 selectively regulated the phosphorylation of MEK, leading to increased anchorage-independent growth and migration. Melanoma cells expressing mutant GRM3 had reduced cell growth and cellular migration after short hairpin RNA–mediated knockdown of GRM3 or treatment with a selective MEK inhibitor, AZD-6244, which is currently being used in phase 2 clinical trials. Our study yields the most comprehensive map of genetic alterations in the GPCR gene family.


American Journal of Human Genetics | 2010

Massively Parallel Sequencing of Exons on the X Chromosome Identifies RBM10 as the Gene that Causes a Syndromic Form of Cleft Palate

Jennifer J. Johnston; Jamie K. Teer; Praveen F. Cherukuri; Nancy F. Hansen; Stacie K. Loftus; Karen Chong; James C. Mullikin; Leslie G. Biesecker

Micrognathia, glossoptosis, and cleft palate comprise one of the most common malformation sequences, Robin sequence. It is a component of the TARP syndrome, talipes equinovarus, atrial septal defect, Robin sequence, and persistent left superior vena cava. This disorder is X-linked and severe, with apparently 100% pre- or postnatal lethality in affected males. Here we characterize a second family with TARP syndrome, confirm linkage to Xp11.23-q13.3, perform massively parallel sequencing of X chromosome exons, filter the results via a number of criteria including the linkage region, use a unique algorithm to characterize sequence changes, and show that TARP syndrome is caused by mutations in the RBM10 gene, which encodes RNA binding motif 10. We further show that this previously uncharacterized gene is expressed in midgestation mouse embryos in the branchial arches and limbs, consistent with the human phenotype. We conclude that massively parallel sequencing is useful to characterize large candidate linkage intervals and that it can be used successfully to allow identification of disease-causing gene mutations.


Blood | 2010

Gray platelet syndrome: natural history of a large patient cohort and locus assignment to chromosome 3p

Meral Gunay-Aygun; Yifat Zivony-Elboum; Fatma Gumruk; Dan Geiger; Mualla Cetin; Morad Khayat; Robert Kleta; Nehama Kfir; Yair Anikster; Judith Chezar; Mauricio Arcos-Burgos; A Shalata; Horia Stanescu; J Manaster; Mutlu Arat; Hailey Edwards; Andrew Freiberg; Ps Hart; Lc Riney; K Patzel; P Tanpaiboon; Tom Markello; Marjan Huizing; Irina Maric; M Horne; Beate E. Kehrel; Kerstin Jurk; Nancy F. Hansen; Praveen F. Cherukuri; MaryPat Jones

Gray platelet syndrome (GPS) is an inherited bleeding disorder characterized by macrothrombocytopenia and absence of platelet α-granules resulting in typical gray platelets on peripheral smears. GPS is associated with a bleeding tendency, myelofibrosis, and splenomegaly. Reports on GPS are limited to case presentations. The causative gene and underlying pathophysiology are largely unknown. We present the results of molecular genetic analysis of 116 individuals including 25 GPS patients from 14 independent families as well as novel clinical data on the natural history of the disease. The mode of inheritance was autosomal recessive (AR) in 11 and indeterminate in 3 families. Using genome-wide linkage analysis, we mapped the AR-GPS gene to a 9.4-Mb interval on 3p21.1-3p22.1, containing 197 protein-coding genes. Sequencing of 1423 (69%) of the 2075 exons in the interval did not identify the GPS gene. Long-term follow-up data demonstrated the progressive nature of the thrombocytopenia and myelofibrosis of GPS resulting in fatal hemorrhages in some patients. We identified high serum vitamin B(12) as a consistent, novel finding in GPS. Chromosome 3p21.1-3p22.1 has not been previously linked to a platelet disorder; identification of the GPS gene will likely lead to the discovery of novel components of platelet organelle biogenesis. This study is registered at www.clinicaltrials.gov as NCT00069680 and NCT00369421.


Blood | 2011

Genome-wide ChIP-Seq reveals a dramatic shift in the binding of the transcription factor erythroid Kruppel-like factor during erythrocyte differentiation

Andre M. Pilon; Subramanian S. Ajay; Swathi Ashok Kumar; Laurie A. Steiner; Praveen F. Cherukuri; Stephen Wincovitch; Stacie M. Anderson; James C. Mullikin; Patrick G. Gallagher; Ross C. Hardison; Elliott H. Margulies; David M. Bodine

Erythropoiesis is dependent on the activity of transcription factors, including the erythroid-specific erythroid Kruppel-like factor (EKLF). ChIP followed by massively parallel sequencing (ChIP-Seq) is a powerful, unbiased method to map trans-factor occupancy. We used ChIP-Seq to study the interactome of EKLF in mouse erythroid progenitor cells and more differentiated erythroblasts. We correlated these results with the nuclear distribution of EKLF, RNA-Seq analysis of the transcriptome, and the occupancy of other erythroid transcription factors. In progenitor cells, EKLF is found predominantly at the periphery of the nucleus, where EKLF primarily occupies the promoter regions of genes and acts as a transcriptional activator. In erythroblasts, EKLF is distributed throughout the nucleus, and erythroblast-specific EKLF occupancy is predominantly in intragenic regions. In progenitor cells, EKLF modulates general cell growth and cell cycle regulatory pathways, whereas in erythroblasts EKLF is associated with repression of these pathways. The EKLF interactome shows very little overlap with the interactomes of GATA1, GATA2, or TAL1, leading to a model in which EKLF directs programs that are independent of those regulated by the GATA factors or TAL1.


Proceedings of the National Academy of Sciences of the United States of America | 2012

Circadian changes in long noncoding RNAs in the pineal gland.

Steven L. Coon; Peter J. Munson; Praveen F. Cherukuri; David Sugden; Martin F. Rath; Morten Møller; Samuel J. H. Clokie; Cong Fu; Mary E. Olanich; Zoila Rangel; Thomas Werner; Nisc Comparative Sequencing Program; James C. Mullikin; David C. Klein; Betty Benjamin; Robert W. Blakesley; Gerry Bouffard; Shelise Brooks; Grace Chu; Holly Coleman; Mila Dekhtyar; Michael Gregory; Xiaobin Guan; Jyoti Gupta; Joel Han; April Hargrove; Shi-ling Ho; Taccara Johnson; Richelle Legaspi; Sean Lovett

Long noncoding RNAs (lncRNAs) play a broad range of biological roles, including regulation of expression of genes and chromosomes. Here, we present evidence that lncRNAs are involved in vertebrate circadian biology. Differential night/day expression of 112 lncRNAs (0.3 to >50 kb) occurs in the rat pineal gland, which is the source of melatonin, the hormone of the night. Approximately one-half of these changes reflect nocturnal increases. Studies of eight lncRNAs with 2- to >100-fold daily rhythms indicate that, in most cases, the change results from neural stimulation from the central circadian oscillator in the suprachiasmatic nucleus (doubling time = 0.5–1.3 h). Light exposure at night rapidly reverses (halving time = 9–32 min) levels of some of these lncRNAs. Organ culture studies indicate that expression of these lncRNAs is regulated by norepinephrine acting through cAMP. These findings point to a dynamic role of lncRNAs in the circadian system.

Collaboration


Dive into the Praveen F. Cherukuri's collaboration.

Top Co-Authors

Avatar

Pedro Cruz

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Nancy F. Hansen

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

James C. Mullikin

Wellcome Trust Sanger Institute

View shared research outputs
Top Co-Authors

Avatar

Jamie K. Teer

University of South Florida

View shared research outputs
Top Co-Authors

Avatar

Robert W. Blakesley

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

William A. Gahl

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Alice C. Young

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Cynthia J. Tifft

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

David Adams

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Murat Sincan

National Institutes of Health

View shared research outputs
Researchain Logo
Decentralizing Knowledge