Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Praveen K. Bharti is active.

Publication


Featured researches published by Praveen K. Bharti.


Antimicrobial Agents and Chemotherapy | 2007

Similar Trends of Pyrimethamine Resistance-Associated Mutations in Plasmodium vivax and P. falciparum

Mohammad Tauqeer Alam; Hema Bora; Praveen K. Bharti; Muheet A. Saifi; Manoj K. Das; Vas Dev; Ashwani Kumar; Neeru Singh; A. P. Dash; Brahmananda Das; Wajihullah; Yagya D. Sharma

ABSTRACT The antifolate drugs sulfadoxine and pyrimethamine are commonly used to treat Plasmodium falciparum malaria. However, they can also affect the Plasmodium vivax parasite if it coexists with P. falciparum, as both species have common drug targets. Resistance to the antifolate drugs arises due to point mutations in the target enzymes of the respective parasite. To assess the cross-species impact of antifolate drug treatment, we describe here the dihydrofolate reductase (DHFR) mutations among field isolates of P. vivax and P. falciparum. The overall DHFR mutation rate for P. vivax was lower than that for P. falciparum. However, both species of Plasmodium followed similar trends of DHFR mutations. Similar to P. falciparum, the DHFR mutation rate of P. vivax also varied from region to region. It was lower in P. vivax-dominant regions but higher in the P. falciparum-dominated areas and highest where antifolates are used as the first line of antimalarial treatment. In conclusion, the antifolate treatment of falciparum malaria is proportionately affecting the DHFR mutations of P. vivax, suggesting that the drug should be used with caution to minimize the development of cross-species resistance in the field.


The Journal of Infectious Diseases | 2014

Field Evaluation of a Real-Time Fluorescence Loop-Mediated Isothermal Amplification Assay, RealAmp, for the Diagnosis of Malaria in Thailand and India

Jaymin C. Patel; Naomi W. Lucchi; Priyanka Srivastava; Jessica T. Lin; Rungniran Sug-aram; Supannee Aruncharus; Praveen K. Bharti; Man M. Shukla; Kanungnit Congpuong; Wichai Satimai; Neeru Singh; Venkatachalam Udhayakumar; Steven R. Meshnick

BACKGROUND To eliminate malaria, surveillance for submicroscopic infections is needed. Molecular methods can detect submicroscopic infections but have not hitherto been amenable to implementation in surveillance programs. A portable loop-mediated isothermal amplification assay called RealAmp was assessed in 2 areas of low malaria transmission. METHODS RealAmp was evaluated in 141 patients from health clinics in India (passive surveillance) and in 127 asymptomatic persons in Thailand (active surveillance). The diagnostic validity, precision, and predictive value of RealAmp were determined using polymerase chain reaction (PCR) as the reference method. A pilot study of RealAmp was also performed on samples from patients presenting at a Thai health center. RESULTS A total of 96 and 7 positive cases were detected in India and Thailand, respectively, via PCR. In comparison with nested PCR, the sensitivity and specificity of RealAmp in India were 94.8% (95% confidence interval [CI], 88.3%-98.3%) and 100% (95% CI, 92.1%-100%), respectively, with correct identification of all 5 Plasmodium vivax cases. In Thailand, compared with pooled real-time PCR, RealAmp demonstrated 100% sensitivity (95% CI, 59.0%-100%) and 96.7% specificity (95% CI, 91.7%-99.1%). Testing at the health center demonstrated RealAmps potential to serve as a point-of-care test with results available in 30-75 minutes. CONCLUSION RealAmp was comparable to PCR in detecting malaria parasites and shows promise as a tool to detect submicroscopic infections in malaria control and elimination programs worldwide.


BMC Infectious Diseases | 2005

Diagnostic and prognostic utility of an inexpensive rapid on site malaria diagnostic test (ParaHIT f) among ethnic tribal population in areas of high, low and no transmission in central India

Neeru Singh; Ak Mishra; Mm Shukla; Sk Chand; Praveen K. Bharti

BackgroundMalaria presents a diagnostic challenge in most tropical countries. Rapid detection of the malaria parasite and early treatment of infection still remain the most important goals of disease management. Therefore, performance characteristics of the new indigenous ParaHIT f test (Span diagnostic Ltd, Surat, India) was determined among ethnic tribal population in four districts of different transmission potential in central India to assess whether this rapid diagnostic test (RDT) could be widely applied as a diagnostic tool to control malaria. Beyond diagnosis, the logical utilization of RDTs is to monitor treatment outcome.MethodsA finger prick blood sample was collected from each clinically suspected case of malaria to prepare blood smear and for testing with the RDT after taking informed consent. The blood smears were read by an experienced technician blinded to the RDT results and clinical status of the subjects. The figures for specificity, sensitivity, accuracy and predictive values were calculated using microscopy as gold standard.ResultsThe prevalence of malaria infection estimated by RDT in parallel with microscopy provide evidence of the type of high, low or no transmission in the study area. Analysis revealed (pooled data of all four epidemiological settings) that overall sensitivity, specificity and accuracy of the RDT were >90% in areas of different endemicity. While, RDT is useful to confirm the diagnosis of new symptomatic cases of suspected P. falciparum infection, the persistence of parasite antigen leading to false positives even after clearance of asexual parasitaemia has limited its utility as a prognostic tool.ConclusionThe study showed that the ParaHIT f test was easy to use, reliable and cheap. Thus this RDT is an appropriate test for the use in the field by paramedical staff when laboratory facilities are not available and thus likely to contribute greatly to an effective control of malaria in resource poor countries.


PLOS ONE | 2016

Prevalence of pfhrp2 and/or pfhrp3 Gene Deletion in Plasmodium falciparum Population in Eight Highly Endemic States in India

Praveen K. Bharti; Himanshu Singh Chandel; Amreen Ahmad; Sri Krishna; Venkatachalam Udhayakumar; Neeru Singh

Background Plasmodium falciparum encoded histidine rich protein (HRP2) based malaria rapid diagnostic tests (RDTs) are used in India. Deletion of pfhrp2 and pfhrp3 genes contributes to false negative test results, and large numbers of such deletions have been reported from South America, highlighting the importance of surveillance to detect such deletions. Methods This is the first prospective field study carried out at 16 sites located in eight endemic states of India to assess the performance of PfHRP2 based RDT kits used in the national malaria control programme. In this study, microscopically confirmed P. falciparum but RDT negative samples were assessed for presence of pfhrp2, pfhrp3, and their flanking genes using PCR. Results Among 1521 microscopically positive P. falciparum samples screened, 50 were negative by HRP2 based RDT test. Molecular testing was carried out using these 50 RDT negative samples by assuming that 1471 RDT positive samples carried pfhrp2 gene. It was found that 2.4% (36/1521) and 1.8% (27/1521) of samples were negative for pfhrp2 and pfhrp3 genes, respectively. However, the frequency of pfhrp2 deletions varied between the sites ranging from 0–25% (2.4, 95% CI; 1.6–3.3). The frequency of both pfhrp2 and pfhrp3 gene deletion varied from 0–8% (1.6, 95% CI; 1.0–2.4). Conclusion This study provides evidence for low level presence of pfhrp2 and pfhrp3 deleted P. falciparum parasites in different endemic regions of India, and periodic surveillance is warranted for reliable use of PfHRP2 based RDTs.


PLOS ONE | 2012

Genetic Variation in the Plasmodium falciparum Circumsporozoite Protein in India and Its Relevance to RTS,S Malaria Vaccine

Mohammad Zeeshan; Mohammad Tauqeer Alam; Sumiti Vinayak; Hema Bora; Rupesh Kumar Tyagi; Mohd. Shoeb Alam; Vandana Choudhary; Pooja Mittra; Vanshika Lumb; Praveen K. Bharti; Venkatachalam Udhayakumar; Neeru Singh; Vidhan Jain; Pushpendra Pal Singh; Yagya D. Sharma

RTS,S is the most advanced malaria vaccine candidate, currently under phase-III clinical trials in Africa. This Plasmodium falciparum vaccine contains part of the central repeat region and the complete C-terminal T cell epitope region (Th2R and Th3R) of the circumsporozoite protein (CSP). Since naturally occurring polymorphisms at the vaccine candidate loci are critical determinants of the protective efficacy of the vaccines, it is imperative to investigate these polymorphisms in field isolates. In this study we have investigated the genetic diversity at the central repeat, C-terminal T cell epitope (Th2R and Th3R) and N-terminal T cell epitope regions of the CSP, in P. falciparum isolates from Madhya Pradesh state of India. These isolates were collected through a 5-year prospective study aimed to develop a well-characterized field-site for the future evaluation of malaria vaccine in India. Our results revealed that the central repeat (63 haplotypes, n = 161) and C-terminal Th2R/Th3R epitope (24 haplotypes, n = 179) regions were highly polymorphic, whereas N-terminal non-repeat region was less polymorphic (5 haplotypes, n = 161) in this population. We did not find any evidence of the role of positive natural selection in maintaining the genetic diversity at the Th2R/Th3R regions of CSP. Comparative analysis of the Th2R/Th3R sequences from this study to the global isolates (n = 1160) retrieved from the GenBank database revealed two important points. First, the majority of the sequences (∼61%, n = 179) from this study were identical to the Dd2/Indochina type, which is also the predominant Th2R/Th3R haplotype in Asia (∼59%, n = 974). Second, the Th2R/Th3R sequences in Asia, South America and Africa are geographically distinct with little allele sharing between continents. In conclusion, this study provides an insight on the existing polymorphisms in the CSP in a parasite population from India that could potentially influence the efficacy of RTS,S vaccine in this region.


PLOS ONE | 2013

Dynamics of Forest Malaria Transmission in Balaghat District, Madhya Pradesh, India

Neeru Singh; Sunil K. Chand; Praveen K. Bharti; Mrigendra P. Singh; Gyan Chand; A. K. Mishra; Man M. Shukla; Man M. Mahulia; Ravendra K. Sharma

Background An epidemiological and entomological study was carried out in Balaghat district, Madhya Pradesh, India to understand the dynamics of forest malaria transmission in a difficult and hard to reach area where indoor residual spray and insecticide treated nets were used for vector control. Methods This community based cross-sectional study was undertaken from January 2010 to December 2012 in Baihar and Birsa Community Health Centres of district Balaghat for screening malaria cases. Entomological surveillance included indoor resting collections, pyrethrum spray catches and light trap catches. Anophelines were assayed by ELISA for detection of Plasmodium circumsporozoite protein. Findings Plasmodium falciparum infection accounted for >80% of all infections. P. vivax 16.5%, P. malariae 0.75% and remaining were mixed infections of P. falciparum, P. vivax and P. malariae. More than, 30% infections were found in infants under 6 months of age. Overall, an increasing trend in malaria positivity was observed from 2010 to 2012 (chi-square for trend  =  663.55; P<0.0001). Twenty five Anopheles culicifacies (sibling species C, D and E) were positive for circumsporozoite protein of P. falciparum (44%) and P. vivax (56%). Additionally, 2 An. fluviatilis, were found positive for P. falciparum and 1 for P. vivax (sibling species S and T). An. fluviatilis sibling species T was found as vector in forest villages for the first time in India. Conclusion These results showed that the study villages are experiencing almost perennial malaria transmission inspite of indoor residual spray and insecticide treated nets. Therefore, there is a need for new indoor residual insecticides which has longer residual life or complete coverage of population with long lasting insecticide treated nets or both indoor residual spray and long lasting bed nets for effective vector control. There is a need to undertake a well designed case control study to evaluate the efficacy of these interventions.


Tropical Medicine & International Health | 2009

Therapeutic efficacy of chloroquine and sequence variation in pfcrt gene among patients with falciparum malaria in central India.

Praveen K. Bharti; Mohammad Tauqeer Alam; Robert B. Boxer; Man M. Shukla; Sant P. Gautam; Yagya D. Sharma; Neeru Singh

Objectives  To assess the therapeutic efficacy of chloroquine (CQ) treatment against uncomplicated Plasmodium falciparum infections in a tribal population of central India (Madhya Pradesh) and to investigate the prevalence of mutant P. falciparum chloroquine‐resistant transporter (pfcrt) gene in the parasite population.


Emerging Infectious Diseases | 2015

Detection of Mixed Infections with Plasmodium spp. by PCR, India, 2014.

Sri Krishna; Praveen K. Bharti; Himashu S. Chandel; Amreen Ahmad; Rajesh Kumar; Puspendra P. Singh; Mrigendra P. Singh; Neeru Singh

In 8 malaria-endemic states in India, mixed Plasmodium spp. infections were detected by PCR in 17.4% (265/1,521) of blood samples that microscopy had shown to contain only P. falciparum. The quality of microscopy must be improved because use of PCR for detection of malaria parasites is limited in rural areas.


Malaria Journal | 2012

Genetic diversity in the block 2 region of the merozoite surface protein-1 of Plasmodium falciparum in central India

Praveen K. Bharti; Man M. Shukla; Yagya D. Sharma; Neeru Singh

BackgroundMalaria continues to be a significant health problem in India. Several of the intended Plasmodium falciparum vaccine candidate antigens are highly polymorphic. The genetic diversity of P. falciparum merozoite surface protein-1 (MSP-1) has been extensively studied from various parts of the world. However, limited data are available from India. The aim of the present study was a molecular characterization of block 2 region of MSP-1 gene from the tribal-dominated, forested region of Madhya Pradesh.MethodsDNA sequencing analysis was carried out in 71 field isolates collected between July 2005 to November 2005 and in 98 field isolates collected from July 2009 to December 2009. Alleles identified by DNA sequencing were aligned with the strain 3D7 and polymorphism analysis was done by using Edit Sequence tool (DNASTAR).ResultsThe malaria positivity was 26% in 2005, which rose to 29% in 2009 and P. falciparum prevalence was also increased from 72% in 2005 to 81% in 2009. The overall allelic prevalence was higher in K1 (51%) followed by MAD20 (28%) and RO33 (21%) in 2005 while in 2009, RO33 was highest (40%) followed by K1 (36%) and MAD20 (24%).ConclusionsThe present study reports extensive genetic variations and dynamic evolution of block 2 region of MSP-1 in central India. Characterization of antigenic diversity in vaccine candidate antigens are valuable for future vaccine trials as well as understanding the population dynamics of P. falciparum parasites in this area.


PLOS ONE | 2013

Comparative Evaluation of Bivalent Malaria Rapid Diagnostic Tests versus Traditional Methods in Field with Special Reference to Heat Stability Testing in Central India

Neeru Singh; Praveen K. Bharti; Mrigendra P. Singh; S. K. Mishra; Man M. Shukla; Ravendra K. Sharma; Rajesh Singh

Background Malaria presents a diagnostic challenge in areas where both Plasmodium falciparum and P.vivax are co-endemic. Bivalent Rapid Diagnostic tests (RDTs) showed promise as diagnostic tools for P.falciparum and P.vivax. To assist national malaria control programme in the selection of RDTs, commercially available seven malaria RDTs were evaluated in terms of their performance with special reference to heat stability. Methodology/Principal Findings This study was undertaken in four forested districts of central India (July, 2011– March, 2012). All RDTs were tested simultaneously in field along with microscopy as gold standard. These RDTs were stored in their original packing at 25°C before transport to the field or they were stored at 35°C and 45°C upto 100 days for testing the performance of RDTs at high temperature. In all 2841 patients with fever were screened for malaria of which 26% were positive for P.falciparum, and 17% for P.vivax. The highest sensitivity of any RDT for P.falciparum was 98% (95% CI; 95.9–98.8) and lowest sensitivity was 76% (95% CI; 71.7–79.6). For P.vivax highest and lowest sensitivity for any RDT was 80% (95% CI; 94.9 - 83.9) and 20% (95% CI; 15.6–24.5) respectively. Heat stability experiments showed that most RDTs for P.falciparum showed high sensitivity at 45°C upto 90 days. While for P.vivax only two RDTs maintained good sensitivity upto day 90 when compared with RDTs kept at room temperature. Agreement between observers was excellent for positive and negative readings for both P.falciparum and P.vivax (Kappa >0.6–0.9). Conclusion This is first field evaluation of RDTs regarding their temperature stability. Although RDTs are useful as diagnostic tool for P.falciparum and P.vivax even at high temperature, the quality of RDTs should be regulated and monitored more closely.

Collaboration


Dive into the Praveen K. Bharti's collaboration.

Top Co-Authors

Avatar

Neeru Singh

Indian Council of Medical Research

View shared research outputs
Top Co-Authors

Avatar

Mrigendra P. Singh

National Institute of Malaria Research

View shared research outputs
Top Co-Authors

Avatar

Rakesh Sehgal

Post Graduate Institute of Medical Education and Research

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

P. K. Mohapatra

Indian Council of Medical Research

View shared research outputs
Top Co-Authors

Avatar

Jagadish Mahanta

Regional Medical Research Centre

View shared research outputs
Top Co-Authors

Avatar

Man M. Shukla

National Institute of Malaria Research

View shared research outputs
Top Co-Authors

Avatar

Sri Krishna

Indian Institute of Science

View shared research outputs
Top Co-Authors

Avatar

Ravendra K. Sharma

Indian Council of Medical Research

View shared research outputs
Researchain Logo
Decentralizing Knowledge