Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Praveen Rao Juvvadi is active.

Publication


Featured researches published by Praveen Rao Juvvadi.


Nature | 2005

Genome sequencing and analysis of Aspergillus oryzae

Masayuki Machida; Kiyoshi Asai; Motoaki Sano; Toshihiro Tanaka; Toshitaka Kumagai; Goro Terai; Ken Ichi Kusumoto; Toshihide Arima; Osamu Akita; Yutaka Kashiwagi; Keietsu Abe; Katsuya Gomi; Hiroyuki Horiuchi; Katsuhiko Kitamoto; Tetsuo Kobayashi; Michio Takeuchi; David W. Denning; James E. Galagan; William C. Nierman; Jiujiang Yu; David B. Archer; Joan W. Bennett; Deepak Bhatnagar; Thomas E. Cleveland; Natalie D. Fedorova; Osamu Gotoh; Hiroshi Horikawa; Akira Hosoyama; Masayuki Ichinomiya; Rie Igarashi

The genome of Aspergillus oryzae, a fungus important for the production of traditional fermented foods and beverages in Japan, has been sequenced. The ability to secrete large amounts of proteins and the development of a transformation system have facilitated the use of A. oryzae in modern biotechnology. Although both A. oryzae and Aspergillus flavus belong to the section Flavi of the subgenus Circumdati of Aspergillus, A. oryzae, unlike A. flavus, does not produce aflatoxin, and its long history of use in the food industry has proved its safety. Here we show that the 37-megabase (Mb) genome of A. oryzae contains 12,074 genes and is expanded by 7–9 Mb in comparison with the genomes of Aspergillus nidulans and Aspergillus fumigatus. Comparison of the three aspergilli species revealed the presence of syntenic blocks and A. oryzae-specific blocks (lacking synteny with A. nidulans and A. fumigatus) in a mosaic manner throughout the genome of A. oryzae. The blocks of A. oryzae-specific sequence are enriched for genes involved in metabolism, particularly those for the synthesis of secondary metabolites. Specific expansion of genes for secretory hydrolytic enzymes, amino acid metabolism and amino acid/sugar uptake transporters supports the idea that A. oryzae is an ideal microorganism for fermentation.


Bioscience, Biotechnology, and Biochemistry | 2007

Genomics of Aspergillus oryzae

Tetsuo Kobayashi; Keietsu Abe; Kiyoshi Asai; Katsuya Gomi; Praveen Rao Juvvadi; Masashi Kato; Katsuhiko Kitamoto; Michio Takeuchi; Masayuki Machida

The genome sequence of Aspergillus oryzae, a fungus used in the production of the traditional Japanese fermentation foods sake (rice wine), shoyu (soy sauce), and miso (soybean paste), has revealed prominent features in its gene composition as compared to those of Saccharomyces cerevisiae and Neurospora crassa. The A. oryzae genome is extremely enriched with genes involved in biomass degradation, primary and secondary metabolism, transcriptional regulation, and cell signaling. Even compared to the related species A. nidulans and A. fumigatus, an abundance of metabolic genes is apparent, with acquisition of more than 6 Mb of sequence in the A. oryzae lineage, interspersed throughout the A. oryzae genome. Besides the various already established merits of A. oryzae for industrial uses, the genome sequence and the abundance of metabolic genes should significantly accelerate the biotechnological use of A. oryzae in industry.


Antimicrobial Agents and Chemotherapy | 2009

Differential Effects of Inhibiting Chitin and 1,3-β-d-Glucan Synthesis in Ras and Calcineurin Mutants of Aspergillus fumigatus

Jarrod R. Fortwendel; Praveen Rao Juvvadi; Nadthanan Pinchai; B. Zachary Perfect; J. Andrew Alspaugh; John R. Perfect; William J. Steinbach

ABSTRACT Aspergillus fumigatus must be able to properly form hyphae and maintain cell wall integrity in order to establish invasive disease. Ras proteins and calcineurin each have been implicated as having roles in these processes. Here, we further delineate the roles of calcineurin and Ras activity in cell wall biosynthesis and hyphal morphology using genetic and pharmacologic tools. Strains deleted for three genes encoding proteins of these pathways, rasA (the Ras protein), cnaA (calcineurin), or crzA (the zinc finger transcription factor downstream of calcineurin), all displayed decreased cell wall 1,3-β-d-glucan content. Echinocandin treatment further decreased the levels of 1,3-β-d-glucan for all strains tested yet also partially corrected the hyphal growth defect of the ΔrasA strain. The inhibition of glucan synthesis caused an increase in chitin content for wild-type, dominant-active rasA, and ΔrasA strains. However, this important compensatory response was diminished in the calcineurin pathway mutants (ΔcnaA and ΔcrzA). Taken together, our data suggest that the Ras and calcineurin pathways act in parallel to regulate cell wall formation and hyphal growth. Additionally, the calcineurin pathway elements cnaA and crzA play a major role in proper chitin and glucan incorporation into the A. fumigatus cell wall.


Antimicrobial Agents and Chemotherapy | 2010

Transcriptional regulation of chitin synthases by calcineurin controls paradoxical growth of Aspergillus fumigatus in response to caspofungin.

Jarrod R. Fortwendel; Praveen Rao Juvvadi; B. Zachary Perfect; Luise E. Rogg; John R. Perfect; William J. Steinbach

ABSTRACT Attenuated activity of echinocandin antifungals at high concentrations, known as the “paradoxical effect,” is a well-established phenomenon in Candida albicans and Aspergillus fumigatus. In the yeast C. albicans, upregulation of chitin biosynthesis via the protein kinase C (PKC), high-osmolarity glycerol response (HOG), and Ca2+/calcineurin signaling pathways is an important cell wall stress response that permits growth in the presence of high concentrations of echinocandins. However, nothing is known of the molecular mechanisms regulating the mold A. fumigatus and its paradoxical response to echinocandins. Here, we show that the laboratory strain of A. fumigatus and five of seven clinical A. fumigatus isolates tested display various magnitudes of paradoxical growth in response to caspofungin. Interestingly, none of the eight strains showed paradoxical growth in the presence of micafungin or anidulafungin. Treatment of the ΔcnaA and ΔcrzA strains, harboring gene deletions of the calcineurin A subunit and the calcineurin-dependent transcription factor, respectively, with high concentrations of caspofungin revealed that the A. fumigatus paradoxical effect is calcineurin pathway dependent. Exploring a molecular role for CnaA in the compensatory chitin biosynthetic response, we found that caspofungin treatment resulted in increased chitin synthase gene expression, leading to a calcineurin-dependent increase in chitin synthase activity. Taken together, our data suggest a mechanistic role for A. fumigatus calcineurin signaling in the chitin biosynthetic response observed during paradoxical growth in the presence of high-dose caspofungin treatment.


Eukaryotic Cell | 2012

Heat shock protein 90 is required for conidiation and cell wall integrity in Aspergillus fumigatus.

Frédéric Lamoth; Praveen Rao Juvvadi; Jarrod R. Fortwendel; William J. Steinbach

ABSTRACT Heat shock protein 90 (Hsp90) is a eukaryotic molecular chaperone. Its involvement in the resistance of Candida albicans to azole and echinocandin antifungals is well established. However, little is known about Hsp90s function in the filamentous fungal pathogen Aspergillus fumigatus. We investigated the role of Hsp90 in A. fumigatus by genetic repression and examined its cellular localization under various stress conditions. Failure to generate a deletion strain of hsp90 suggested that it is essential. Genetic repression of Hsp90 was achieved by an inducible nitrogen-dependent promoter (pniiA-Hsp90) and led to decreased spore viability, decreased hyphal growth, and severe defects in germination and conidiation concomitant with the downregulation of the conidiation-specific transcription factors brlA, wetA, and abaA. Hsp90 repression potentiated the effect of cell wall inhibitors affecting the β-glucan structure of the cell wall (caspofungin, Congo red) and of the calcineurin inhibitor FK506, supporting a role in regulating cell wall integrity pathways. Moreover, compromising Hsp90 abolished the paradoxical effect of caspofungin. Pharmacological inhibition of Hsp90 by geldanamycin and its derivatives (17-AAG and 17-DMAG) resulted in similar effects. C-terminal green fluorescent protein (GFP) tagging of Hsp90 revealed mainly cytosolic distribution under standard growth conditions. However, treatment with caspofungin resulted in Hsp90 accumulation at the cell wall and at sites of septum formation, further highlighting its role in cell wall stress compensatory mechanisms. Targeting Hsp90 with fungal-specific inhibitors to cripple stress response compensatory pathways represents an attractive new antifungal strategy.


DNA Research | 2007

Analysis of Expressed Sequence Tags from the Fungus Aspergillus oryzae Cultured Under Different Conditions

Takeshi Akao; Motoaki Sano; Osamu Yamada; Terumi Akeno; Kaoru Fujii; Kuniyasu Goto; Sumiko Ohashi-Kunihiro; Kumiko Takase; Makoto Yasukawa-Watanabe; Kanako Yamaguchi; Yoko Kurihara; Jun-ichi Maruyama; Praveen Rao Juvvadi; Akimitsu Tanaka; Yoji Hata; Yasuji Koyama; Shotaro Yamaguchi; Noriyuki Kitamoto; Katsuya Gomi; Keietsu Abe; Michio Takeuchi; Tetsuo Kobayashi; Hiroyuki Horiuchi; Katsuhiko Kitamoto; Yutaka Kashiwagi; Masayuki Machida; Osamu Akita

Abstract We performed random sequencing of cDNAs from nine biologically or industrially important cultures of the industrially valuable fungus Aspergillus oryzae to obtain expressed sequence tags (ESTs). Consequently, 21 446 raw ESTs were accumulated and subsequently assembled to 7589 non-redundant consensus sequences (contigs). Among all contigs, 5491 (72.4%) were derived from only a particular culture. These included 4735 (62.4%) singletons, i.e. lone ESTs overlapping with no others. These data showed that consideration of culture grown under various conditions as cDNA sources enabled efficient collection of ESTs. BLAST searches against the public databases showed that 2953 (38.9%) of the EST contigs showed significant similarities to deposited sequences with known functions, 793 (10.5%) were similar to hypothetical proteins, and the remaining 3843 (50.6%) showed no significant similarity to sequences in the databases. Culture-specific contigs were extracted on the basis of the EST frequency normalized by the total number for each culture condition. In addition, contig sequences were compared with sequence sets in eukaryotic orthologous groups (KOGs), and classified into the KOG functional categories.


Applied Microbiology and Biotechnology | 2007

Double disruption of the proteinase genes, tppA and pepE, increases the production level of human lysozyme by Aspergillus oryzae

Feng Jie Jin; Taisuke Watanabe; Praveen Rao Juvvadi; Jun-ichi Maruyama; Manabu Arioka; Katsuhiko Kitamoto

In this study, we investigated the effects of proteinase gene disruption on heterologous protein production by Aspergillus oryzae. The human lysozyme (HLY) was selected for recombinant production as a model for the heterologous protein. A tandem HLY construct fused with α-amylase (AmyB) was expressed by A. oryzae in which the Kex2 cleavage site was inserted at the upstream of HLY. HLY was successfully processed from AmyB and produced in the medium. We performed a systematic disruption analysis of five proteinase genes (pepA, pepE, alpA, tppA, and palB) in the HLY-producing strain with the adeA selectable marker. Comparative analysis indicated that disruption of the tppA gene encoding a tripeptidyl peptidase resulted in the highest increase (36%) in the HLY production. We further deleted the tppA gene in the pepE or palB disruptant with another selectable marker, argB. Consequently, a double disruption of the tppA and pepE genes led to a 63% increase in the HLY production compared to the control strain. This is the first study to report that the double disruption of the tppA and pepE genes improved the production level of a heterologous protein by filamentous fungi.


Molecular Microbiology | 2011

Localization and activity of the calcineurin catalytic and regulatory subunit complex at the septum is essential for hyphal elongation and proper septation in Aspergillus fumigatus.

Praveen Rao Juvvadi; Jarrod R. Fortwendel; Luise E. Rogg; Kimberlie A. Burns; Scott H. Randell; William J. Steinbach

Calcineurin, a heterodimer composed of the catalytic (CnaA) and regulatory (CnaB) subunits, plays key roles in growth, virulence and stress responses of fungi. To investigate the contribution of CnaA and CnaB to hyphal growth and septation, ΔcnaB and ΔcnaAΔcnaB strains of Aspergillus fumigatus were constructed. CnaA colocalizes to the contractile actin ring early during septation and remains at the centre of the mature septum. While CnaBs septal localization is CnaA‐dependent, CnaAs septal localization is CnaB‐independent, but CnaB is required for CnaAs function at the septum. Catalytic null mutations in CnaA caused stunted growth despite septal localization of the calcineurin complex, indicating the requirement of calcineurin activity at the septum. Compared to the ΔcnaA and ΔcnaB strains, the ΔcnaAΔcnaB strain displayed more defective growth and aberrant septation. While three Ca2+‐binding motifs in CnaB were sufficient for its association with CnaA at the septum, the amino‐terminal arginine‐rich domains (16‐RRRR‐19 and 44‐RLRKR‐48) are dispensable for septal localization, yet required for complete functionality. Mutation of the 51‐KLDK‐54 motif in CnaB causes its mislocalization from the septum to the nucleus, suggesting it is a nuclear export signal sequence. These findings confirm a cooperative role for the calcineurin complex in regulating hyphal growth and septation.


Antimicrobial Agents and Chemotherapy | 2013

In Vitro Activity of Calcineurin and Heat Shock Protein 90 Inhibitors against Aspergillus fumigatus Azole- and Echinocandin-Resistant Strains

Frédéric Lamoth; Praveen Rao Juvvadi; Christopher Gehrke; William J. Steinbach

ABSTRACT Due to the limited number of antifungals and the emergence of resistance, new therapies against invasive aspergillosis are needed. We show that calcineurin inhibitors are active in vitro against both azole- and echinocandin-resistant Aspergillus fumigatus strains. The heat shock protein 90 (Hsp90) inhibitor geldanamycin had modest activity when used alone, but its combination with caspofungin or tacrolimus (FK506) resulted in fungicidal activity against azole-resistant strains. Targeting the Hsp90-calcineurin axis is a promising alternative strategy against azole-resistant A. fumigatus strains.


Eukaryotic Cell | 2009

Disruption of the Aopex11-1 Gene Involved in Peroxisome Proliferation Leads to Impaired Woronin Body Formation in Aspergillus oryzae

Cristopher Salazar Escaño; Praveen Rao Juvvadi; Feng Jie Jin; Tadashi Takahashi; Yasuji Koyama; Shuichi Yamashita; Jun-ichi Maruyama; Katsuhiko Kitamoto

ABSTRACT The Woronin body, a unique organelle found in the Pezizomycotina, plugs the septal pore upon hyphal damage to prevent excessive cytoplasmic bleeding. Although it was previously shown that the Woronin body buds out from the peroxisome, the relationship between peroxisomal proliferation/division and Woronin body differentiation has not been extensively investigated. In this report, we examined whether Pex11 required for peroxisomal proliferation participates in Woronin body formation in Aspergillus oryzae. A. oryzae contained two orthologous PEX11 genes that were designated Aopex11-1 and Aopex11-2. Deletion of Aopex11 genes revealed that only the ΔAopex11-1 strain showed reduced growth and enlarged peroxisomes in the presence of oleic acid as a sole carbon source, indicating a defect in peroxisomal function and proliferation. Disruption of Aopex11-1 gene impaired the Woronin body function, leading to excessive loss of the cytosol upon hyphal injury. Dual localization analysis of the peroxisome and Woronin body protein AoHex1 demonstrated that Woronin bodies fail to fully differentiate from peroxisomes in the ΔAopex11-1 strain. Furthermore, distribution of AoHex1 was found to be peripheral in the enlarged peroxisome or junctional in dumbbell-shaped peroxisomes. Electron microscopy of the ΔAopex11-1 strain revealed the presence of Woronin bodies that remained associated with organelles resembling peroxisomes, which was supported from the sucrose gradient centrifugation confirming that the Woronin body protein AoHex1 overlapped with the density-shifted peroxisome in the ΔAopex11-1 strain. In conclusion, the present study describes the role of Pex11 in Woronin body differentiation for the first time.

Collaboration


Dive into the Praveen Rao Juvvadi's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge