Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Praveen Thumbikat is active.

Publication


Featured researches published by Praveen Thumbikat.


PLOS Pathogens | 2009

Bacteria-induced uroplakin signaling mediates bladder response to infection.

Praveen Thumbikat; Ruth E. Berry; Ge Zhou; Benjamin K. Billips; Ryan E. Yaggie; Tetiana Zaichuk; Tung-Tien Sun; Anthony J. Schaeffer; David J. Klumpp

Urinary tract infections are the second most common infectious disease in humans and are predominantly caused by uropathogenic E. coli (UPEC). A majority of UPEC isolates express the type 1 pilus adhesin, FimH, and cell culture and murine studies demonstrate that FimH is involved in invasion and apoptosis of urothelial cells. FimH initiates bladder pathology by binding to the uroplakin receptor complex, but the subsequent events mediating pathogenesis have not been fully characterized. We report a hitherto undiscovered signaling role for the UPIIIa protein, the only major uroplakin with a potential cytoplasmic signaling domain, in bacterial invasion and apoptosis. In response to FimH adhesin binding, the UPIIIa cytoplasmic tail undergoes phosphorylation on a specific threonine residue by casein kinase II, followed by an elevation of intracellular calcium. Pharmacological inhibition of these signaling events abrogates bacterial invasion and urothelial apoptosis in vitro and in vivo. Our studies suggest that bacteria-induced UPIIIa signaling is a critical mediator of bladder responses to insult by uropathogenic E. coli.


Journal of Immunology | 2006

Antigen-specific responses accelerate bacterial clearance in the bladder.

Praveen Thumbikat; Carl Waltenbaugh; Anthony J. Schaeffer; David J. Klumpp

Urinary tract infections (UTIs) cause patient morbidity and have a substantial economic impact. Half of all women will suffer a UTI at least once, and 25% of these women will have recurrent infections. That 75% of previously infected women do not become reinfected strongly suggests a role for an adaptive immune response. The goal of this study was to characterize the adaptive immune responses to uropathogenic Escherichia coli (UPEC), the predominant uropathogen. A novel murine model of UTI reinfection was developed using the prototypic cystitis UPEC isolate NU14 harboring a plasmid encoding OVA as a unique antigenic marker. Bacterial colonization of the bladder was quantified following one or more infections with NU14-OVA. Animals developed anti-OVA serum IgG and IgM titers after the initial infection and marked up-regulation of activation markers on splenic T cells. We observed a 95% reduction in bacterial colonization upon reinfection, and splenic leukocytes showed Ag-specific proliferation in vitro. Adoptive transfer of splenic T cells or passive transfer of serum from previously infected mice protected naive syngeneic mice from UPEC colonization. These findings support our hypothesis that adaptive immune responses to UPEC protect the bladder from reinfection and form the basis of understanding susceptibility to recurrent UTI in women.


Infection and Immunity | 2006

Uropathogenic Escherichia coli Induces Extrinsic and Intrinsic Cascades To Initiate Urothelial Apoptosis

David J. Klumpp; Matthew T. Rycyk; Michael C. Chen; Praveen Thumbikat; Shomit Sengupta; Anthony J. Schaeffer

ABSTRACT A murine model of urinary tract infection identified urothelial apoptosis as a key event in the pathogenesis mediated by uropathogenic Escherichia coli (UPEC), yet the mechanism of this important host response is not well characterized. We employed a culture model of UPEC-urothelium interactions to examine the biochemical events associated with urothelial apoptosis induced by the UPEC strain NU14. NU14 induced DNA cleavage within 5 h that was inhibited by the broad caspase inhibitor ZVAD, and urothelial caspase 3 activity was induced within 3 h of exposure to type 1 piliated NU14 and was dependent upon interactions mediated by the type 1 pilus adhesin FimH. Flow cytometry experiments using chloromethyl-X-rosamine and Indo-1 revealed FimH-dependent mitochondrial membrane depolarization and elevated [Ca2+]in, respectively, indicating activation of the intrinsic apoptotic pathway. Consistent with this possibility, overexpression of BclXL inhibited NU14 activation of caspase 3. Immunoblotting, caspase inhibitors, and caspase activity assays implicated both caspase 2 and caspase 8 in apoptosis, suggesting the involvement of the intrinsic and extrinsic apoptotic cascades. To reconcile the apparent activation of both extrinsic and intrinsic pathways, we examined Bid-green fluorescent protein localization and observed translocation from the cytosol to mitochondria in response to either NU14 or purified FimH. These data suggest that FimH acts as a tethered toxin of UPEC that activates caspase-dependent urothelial apoptosis via direct induction of the extrinsic pathway and that the intrinsic pathway is activated indirectly as a result of coupling by caspase 8-mediated Bid cleavage.


American Journal of Physiology-regulatory Integrative and Comparative Physiology | 2008

Experimental autoimmune prostatitis induces chronic pelvic pain.

Charles N. Rudick; Anthony J. Schaeffer; Praveen Thumbikat

Pain is the hallmark of patients with chronic prostatitis (CP) and chronic pelvic pain syndrome (CPPS). Despite numerous hypotheses, the etiology and pathogenesis remain unknown. To better understand CP/CPPS, we used a murine experimental autoimmune prostatitis model to examine the development, localization, and modulation of pelvic pain. Pelvic pain was detected 5 days after antigen instillation and was sustained beyond 30 days, indicating the development of chronic pain. The pain was attenuated by lidocaine treatment into the prostate, but not into the bladder or the colon, suggesting that pain originated from the prostate. Experimental autoimmune prostatitis histopathology was confined to the prostate with focal periglandular inflammatory infiltrates in the ventral, dorsolateral, and anterior lobes of the mouse prostate. Inflammation and pelvic pain were positively correlated and increased with time. Morphologically, the dorsolateral prostate alone showed significantly increased neuronal fiber distribution, as evidenced by increased protein gene product 9.5 expression. Pelvic pain was attenuated by treatment with the neuromodulator gabapentin, suggesting spinal and/or supraspinal contribution to chronic pain. These results provide the basis for identifying mechanisms that regulate pelvic pain and the testing of therapeutic agents that block pain development in CP/CPPS.


The Journal of Urology | 2008

Monocyte Chemoattractant Protein-1 and Macrophage Inflammatory Protein-1α as Possible Biomarkers for the Chronic Pelvic Pain Syndrome

Naresh V. Desireddi; Phillip L. Campbell; Jeffrey A. Stern; Rudina Sobkoviak; Shannon Chuai; Shiva Shahrara; Praveen Thumbikat; Richard M. Pope; J. Richard Landis; Alisa E. Koch; Anthony J. Schaeffer

PURPOSE The chronic pelvic pain syndrome is characterized by pelvic pain, voiding symptoms and varying degrees of inflammation within expressed prostatic secretions. We evaluated the chemokines monocyte chemoattractant protein 1 (CCL2) and macrophage inflammatory protein-1alpha (CCL3) in expressed prostatic secretions to identify marker increases associated with inflammatory (IIIA) and noninflammatory (IIIB) chronic pelvic pain syndrome. In addition, chemokine levels were correlated with clinical pain as determined by the National Institutes of Health chronic prostatitis symptom index. MATERIALS AND METHODS Expressed prostatic secretions were collected by digital rectal examination, and evaluated by enzyme linked immunosorbent assays for monocyte chemoattractant protein 1 and macrophage inflammatory protein-1alpha in 154 patients including controls (13), those with benign prostatic hyperplasia (54), chronic pelvic pain syndrome IIIA (37) and IIIB (50). Monocyte chemoattractant protein 1 and macrophage inflammatory protein-1alpha levels were compared between IIIA, IIIB and the control subgroups, and correlated against the chronic prostatitis symptom index and pain subscore using a Spearman test. RESULTS Mean levels of monocyte chemoattractant protein 1 in the control, inflammatory benign prostatic hyperplasia, noninflammatory benign prostatic hyperplasia, inflammatory chronic pelvic pain syndrome and noninflammatory chronic pelvic pain syndrome were 599.4, 886.0, 1,636.5, 3,261.2 and 2,272.7 pg/ml, respectively. Mean levels of macrophage inflammatory protein-1alpha in the control, inflammatory benign prostatic hyperplasia, noninflammatory benign prostatic hyperplasia, IIIA chronic pelvic pain syndrome and IIIB chronic pelvic pain syndrome were 140.1, 299.4, 238.7, 1,057.8 and 978.4 pg/ml, respectively. For each cytokine both chronic pelvic pain syndrome subtypes had statistically higher levels than the control group and patients with benign prostatic hyperplasia (p = 0.0002). Receiver operating curves using monocyte chemoattractant protein 1 levels greater than 704 pg/ml and macrophage inflammatory protein-1alpha greater than 146 pg/ml identified patients with chronic pelvic pain syndrome with an accuracy of 90% from control patients. Macrophage inflammatory protein-1alpha levels (p = 0.0007) correlated with the pain subscore of the chronic prostatitis symptom index while monocyte chemoattractant protein 1 (p = 0.71) did not. CONCLUSIONS Monocyte chemoattractant protein 1 and macrophage inflammatory protein-1alpha within the prostatic fluid in both chronic pelvic pain syndrome subtypes provide candidate future biomarkers for chronic pelvic pain syndrome. In addition, macrophage inflammatory protein-1alpha increase in expressed prostatic secretions provides a new marker for clinical pain in chronic pelvic pain syndrome patients. Given these findings prostatic dysfunction likely has a role in the pathophysiology of this syndrome. These chemokines may serve as effective diagnostic markers and modulators against the chemokines could provide an attractive treatment strategy in individuals with chronic pelvic pain syndrome.


FEBS Journal | 2007

Transient potential receptor channel 4 controls thrombospondin-1 secretion and angiogenesis in renal cell carcinoma.

Dorina Veliceasa; Marina Ivanovic; Frank Thilo Schulze Hoepfner; Praveen Thumbikat; Olga V. Volpert; Norm D. Smith

Angiogenic switch in renal cell carcinoma (RCC) is attributed to the inactivation of the von Hippel–Lindau tumor suppressor, stabilization of hypoxia inducible factor‐1 transcription factor and increased vascular endothelial growth factor. To evaluate the role of an angiogenesis inhibitor, thrombopsondin‐1 (TSP1), we compared TSP1 production in human RCC and normal tissue and secretion by the normal renal epithelium (human normal kidney, HNK) and RCC cells. Normal and RCC tissues stained positive for TSP1, and the levels of TSP1 mRNA and total protein were similar in RCC and HNK cells. However, HNK cells secreted high TSP1, which rendered them nonangiogenic, whereas RCC cells secreted little TSP1 and were angiogenic. Western blot and immunostaining revealed TSP1 in the cytoplasm of RCC cells on serum withdrawal, whereas, in HNK cells, it was rapidly exported. Seeking mechanisms of defective TSP1 secretion, we discovered impaired calcium uptake by RCC in response to vascular endothelial growth factor. In HNK cells, 1,2‐bis(o‐aminophenoxy)ethane‐N,N,N′,N′‐tetraacetic acid acetoxymethyl ester, a calcium chelator, simulated TSP1 retention, mimicking the RCC phenotype. Further analysis revealed a profound decrease in transient receptor potential canonical ion channel 4 (TRPC4) Ca2+ channel expression in RCC cells. TRPC4 silencing in HNK cells caused TSP1 retention and impaired secretion. Double labeling of the secretory system components revealed TSP1 colocalization with coatomer protein II (COPII) anterograde vesicles in HNK cells. In contrast, in RCC cells, TSP1 colocalized with COPI vesicles, pointing to the retrograde transport to the endoplasmic reticulum caused by misfolding. Our study indicates that TRPC4 loss in RCC leads to impaired Ca2+ intake, misfolding, retrograde transport and diminished secretion of antiangiogenic TSP1, thus enabling angiogenic switch during RCC progression.


Infection and Immunity | 2011

Uropathogenic Escherichia coli Induces Chronic Pelvic Pain

Charles N. Rudick; Ruth E. Berry; James R. Johnson; Brian Johnston; David J. Klumpp; Anthony J. Schaeffer; Praveen Thumbikat

ABSTRACT Chronic prostatitis/chronic pelvic pain syndrome (CP/CPPS) is a debilitating syndrome of unknown etiology often postulated, but not proven, to be associated with microbial infection of the prostate gland. We hypothesized that infection of the prostate by clinically relevant uropathogenic Escherichia coli (UPEC) can initiate and establish chronic pain. We utilized an E. coli strain newly isolated from a patient with CP/CPPS (strain CP1) and examined its molecular pathogenesis in cell culture and in a murine model of bacterial prostatitis. We found that CP1 is an atypical isolate distinct from most UPEC in its phylotype and virulence factor profile. CP1 adhered to, invaded, and proliferated within prostate epithelia and colonized the prostate and bladder of NOD and C57BL/6J mice. Using behavioral measures of pelvic pain, we showed that CP1 induced and sustained chronic pelvic pain in NOD mice, an attribute not exhibited by a clinical cystitis strain. Furthermore, pain was observed to persist even after bacterial clearance from genitourinary tissues. CP1 induced pelvic pain behavior exclusively in NOD mice and not in C57BL/6J mice, despite comparable levels of colonization and inflammation. Microbial infections can thus serve as initiating agents for chronic pelvic pain through mechanisms that are dependent on both the virulence of the bacterial strain and the genetic background of the host.


The Journal of Urology | 2012

Role of Mast Cells in Male Chronic Pelvic Pain

Joseph D. Done; Charles N. Rudick; Marsha L. Quick; Anthony J. Schaeffer; Praveen Thumbikat

PURPOSE Chronic pelvic pain syndrome accounts for 90% of all chronic prostatitis but it has an unknown pathogenesis. We sought to understand the role of mast cells and nerve growth factor in chronic pelvic pain. MATERIALS AND METHODS Expressed prostatic secretions in men with chronic pelvic pain syndrome and controls were tested for mast cell tryptase and nerve growth factor. Mast cell number, activation status and nerve growth factor expression were examined in the NOD/ShiLtJ experimental autoimmune prostatitis model and in mast cell deficient KitW-sh/KitW-sh mice. Tactile allodynia was quantified using von Frey filaments as a measure of pelvic pain behavior. Inhibitors of mast cell degranulation, histamine receptor antagonists and anti-nerve growth factor neutralizing antibodies were tested to decrease pelvic pain behavior. RESULTS Men with chronic pelvic pain syndrome showed increased mast cell tryptase and nerve growth factor in expressed prostatic secretions. In the experimental autoimmune prostatitis model increased total and activated mast cells were observed in the prostate. Mast cell deficient KitW-sh/KitW-sh mice showed attenuated pelvic pain behavior but no difference in inflammatory infiltrates in the prostate from controls. Mice with experimental autoimmune prostatitis also demonstrated increased intraprostatic nerve growth factor compared to that of KitW-sh/KitW-sh mice. Treatment of experimental autoimmune prostatitis with a mast cell stabilizer combined with a histamine 1 receptor antagonist resulted in a synergistic decrease in chronic pelvic pain. In contrast, neutralization of nerve growth factor in vivo did not result in pain relief. CONCLUSIONS Results suggest that mast cells are important mediators of chronic pelvic pain in experimental autoimmune prostatitis cases. They may be potential targets for therapeutic intervention in men with chronic prostatitis/chronic pelvic pain syndrome.


Microbes and Infection | 2009

Differentiation-induced uroplakin III expression promotes urothelial cell death in response to uropathogenic E. coli

Praveen Thumbikat; Ruth E. Berry; Anthony J. Schaeffer; David J. Klumpp

Uropathogenic E. coli (UPEC) expressing type 1 pili underlie most urinary tract infections (UTIs). UPEC adherence to the bladder urothelium induces a rapid apoptosis and exfoliation of terminally differentiated urothelial cells, a critical event in pathogenesis. Of the four major uroplakin proteins that are densely expressed on superficial urothelial cells, UPIa serves as the receptor for type 1-piliated UPEC, but the contributions of uroplakins to cell death are not known. We examined the role of differentiation and uroplakin expression on UPEC-induced cell death. Utilizing in vitro models of urothelial differentiation, we demonstrated induction of tissue-specific differentiation markers including uroplakins. UPEC-induced urothelial cell death was shown to increase with enhanced differentiation but required expression of uroplakin III: infection with an adenovirus encoding uroplakin III significantly increased cell death, while siRNA directed against uroplakin III abolished UPEC-induced cell death. In a murine model of UTI where superficial urothelial cells were selectively eroded to expose less differentiated cells, urothelial apoptosis was reduced, indicating a requirement for differentiation in UPEC-induced apoptosis in vivo. These data suggest that induction of uroplakin III during urothelial differentiation sensitizes cells to UPEC-induced death. Thus, uroplakin III plays a pivotal role in UTI pathogenesis.


American Journal of Physiology-regulatory Integrative and Comparative Physiology | 2012

CCL2 and CCL3 are essential mediators of pelvic pain in experimental autoimmune prostatitis.

Marsha L. Quick; Soumi Mukherjee; Charles N. Rudick; Joseph D. Done; Anthony J. Schaeffer; Praveen Thumbikat

Experimental autoimmune prostatitis (EAP) is a murine model of chronic prostatitis/chronic pelvic pain syndrome (CPPS) in men, a syndrome characterized by chronic pelvic pain. We have demonstrated that chemokine ligands CCL2 and CCL3 are biomarkers that correlate with pelvic pain symptoms. We postulated that CCL2 and CCL3 play a functional role in CPPS and therefore examined their expression in EAP. Upon examination of the prostate 5 days after induction of EAP, CCL2 mRNA was elevated 2- to 3-fold, CCL8 by 15-fold, CCL12 by 12- to 13-fold, and CXCL9 by 2- to 4-fold compared with control mice. At 10 days the major chemokines were CXCL13 and CXCL2; at 20 days CCL2 (1- to 2-fold), CCL3 (2- to 3-fold) and CCL11 (2- to 3-fold); and at 30 days, CCL12 (20- to 35-fold) and smaller increases in CCL2, CCL3, and XCL1. Chemokine elevations were accompanied by increases in mast cells and B cells at 5 days, monocytes and neutrophils at day 10, CD4+ T cells at day 20, and CD4+ and CD8+ T cells at day 30. Anti-CCL2 and anti-CCL3 neutralizing antibodies administered at EAP onset attenuated pelvic pain development, but only anti-CCL2 antibodies were effective therapeutically. CCL2- and its cognate receptor CCR2-deficient mice were completely protected from development of pain symptoms but assumed susceptibility after reconstitution with wild-type bone marrow. CCL3-deficient mice showed resistance to the maintenance of pelvic pain while CCR5-deficient mice did not show any lessening of pelvic pain severity. These results suggest that the CCL2-CCR2 axis and CCL3 are important mediators of chronic pelvic pain in EAP.

Collaboration


Dive into the Praveen Thumbikat's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge