Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Prawit Kongjan is active.

Publication


Featured researches published by Prawit Kongjan.


Bioresource Technology | 2009

Bioethanol, biohydrogen and biogas production from wheat straw in a biorefinery concept.

Prasad Laxmi-Narasimha Kaparaju; Maria Serrano; Anne Belinda Thomsen; Prawit Kongjan; Irini Angelidaki

The production of bioethanol, biohydrogen and biogas from wheat straw was investigated within a biorefinery framework. Initially, wheat straw was hydrothermally liberated to a cellulose rich fiber fraction and a hemicellulose rich liquid fraction (hydrolysate). Enzymatic hydrolysis and subsequent fermentation of cellulose yielded 0.41 g-ethanol/g-glucose, while dark fermentation of hydrolysate produced 178.0 ml-H(2)/g-sugars. The effluents from both bioethanol and biohydrogen processes were further used to produce methane with the yields of 0.324 and 0.381 m(3)/kg volatile solids (VS)(added), respectively. Additionally, evaluation of six different wheat straw-to-biofuel production scenaria showed that either use of wheat straw for biogas production or multi-fuel production were the energetically most efficient processes compared to production of mono-fuel such as bioethanol when fermenting C6 sugars alone. Thus, multiple biofuels production from wheat straw can increase the efficiency for material and energy and can presumably be more economical process for biomass utilization.


Bioresource Technology | 2010

Extreme thermophilic biohydrogen production from wheat straw hydrolysate using mixed culture fermentation: effect of reactor configuration.

Prawit Kongjan; Irini Angelidaki

Hydrogen production from hemicellulose-rich wheat straw hydrolysate was investigated in continuously-stirred tank reactor (CSTR), up-flow anaerobic sludge bed (UASB) reactor, and anaerobic filter (AF) reactor. The CSTR was operated at an hydraulic retention time (HRT) of 3 days, and the UASB and AF reactors were operated at 1 day HRT, using mixed extreme thermophiles at 70 °C. The highest hydrogen production yield of 212.0±6.6 mL-H₂/g-sugars, corresponding to a hydrogen production rate of 821.4±25.5 mL-H₂/dL was achieved with the UASB reactor. Lowering the HRT to 2.5 days caused cell mass washout in the CSTR, while the UASB and AF reactors gave fluctuating and reducing hydrogen production at a 0.5-day HRT. The original rate and yield were recovered when the HRT was increased back to 1 day. These results demonstrate that reactor configuration is an important factor for enhancing and stabilizing H₂ production.


Water Research | 2009

Biohydrogen production from xylose at extreme thermophilic temperatures (70°C) by mixed culture fermentation.

Prawit Kongjan; Booki Min; Irini Angelidaki

Biohydrogen production from xylose at extreme thermophilic temperatures (70 degrees C) was investigated in batch and continuous-mode operation. Biohydrogen was successfully produced from xylose by repeated batch cultivations with mixed culture received from a biohydrogen reactor treating household solid wastes at 70 degrees C. The highest hydrogen yield of 1.62+/-0.02 mol-H2/mol-xylose(consumed) was obtained at initial xylose concentration of 0.5 g/L with synthetic medium amended with 1g/L of yeast extract. Lower hydrogen yield was achieved at initial xylose concentration higher than 2g/L. Addition of yeast extract in the cultivation medium resulted in significant improvement of hydrogen yield. The main metabolic products during xylose fermentation were acetate, ethanol, and lactate. The specific growth rates were able to fit the experimental points relatively well with Haldane equation assuming substrate inhibition, and the following kinetic parameters were obtained: the maximum specific growth rate (mu(max)) was 0.17 h(-1), the half-saturation constant (K(s)) was 0.75g/L, and inhibition constant (K(i)) was 3.72 g/L of xylose. Intermittent N2 sparging could enhance hydrogen production when high hydrogen partial pressure (> 0.14 atm) was present in the headspace of the batch reactors. Biohydrogen could be successfully produced in continuously stirred reactor (CSTR) operated at 72-h hydraulic retention time (HRT) with 1g/L of xylose as substrate at 70 degrees C. The hydrogen production yield achieved in the CSTR was 1.36+/-0.03 mol-H2/mol-xylose(sonsumed), and the production rate was 62+/-2 ml/d x L(reactor). The hydrogen content in the methane-free mixed gas was approximately 31+/-1%, and the rest was carbon dioxide. The main intermediate by-products from the effluent were acetate, formate, and ethanol at 4.25+/-0.10, 3.01+/-0.11, and 2.59+/-0.16 mM, respectively.


Biotechnology and Bioengineering | 2010

Biohydrogen production from wheat straw hydrolysate by dark fermentation using extreme thermophilic mixed culture.

Prawit Kongjan; Sompong O-Thong; Meher Kotay; Booki Min; Irini Angelidaki

Hydrolysate was tested as substrate for hydrogen production by extreme thermophilic mixed culture (70°C) in both batch and continuously fed reactors. Hydrogen was produced at hydrolysate concentrations up to 25% (v/v), while no hydrogen was produced at hydrolysate concentration of 30% (v/v), indicating that hydrolysate at high concentrations was inhibiting the hydrogen fermentation process. In addition, the lag phase for hydrogen production was strongly influenced by the hydrolysate concentration, and was prolonged from approximately 11 h at the hydrolysate concentrations below 20% (v/v) to 38 h at the hydrolysate concentration of 25% (v/v). The maximum hydrogen yield as determined in batch assays was 318.4 ± 5.2 mL‐H2/g‐sugars (14.2 ± 0.2 mmol‐H2/g‐sugars) at the hydrolysate concentration of 5% (v/v). Continuously fed, and the continuously stirred tank reactor (CSTR), operating at 3 day hydraulic retention time (HRT) and fed with 20% (v/v) hydrolysate could successfully produce hydrogen. The hydrogen yield and production rate were 178.0 ±  10.1 mL‐H2/g‐sugars (7.9 ± 0.4 mmol H2/g‐sugars) and 184.0 ± 10.7 mL‐H2/day Lreactor (8.2 ± 0.5 mmol‐H2/day Lreactor), respectively, corresponding to 12% of the chemical oxygen demand (COD) from sugars. Additionally, it was found that toxic compounds, furfural and hydroxymethylfurfural (HMF), contained in the hydrolysate were effectively degraded in the CSTR, and their concentrations were reduced from 50 and 28 mg/L, respectively, to undetectable concentrations in the effluent. Phylogenetic analysis of the mixed culture revealed that members involved hydrogen producers in both batch and CSTR reactors were phylogenetically related to the Caldanaerobacter subteraneus, Thermoanaerobacter subteraneus, and Thermoanaerobacterium thermosaccharolyticum. Biotechnol. Bioeng. 2010;105: 899–908.


Bioresource Technology | 2011

Performance and microbial community analysis of two-stage process with extreme thermophilic hydrogen and thermophilic methane production from hydrolysate in UASB reactors

Prawit Kongjan; Sompong O-Thong; Irini Angelidaki

The two-stage process for extreme thermophilic hydrogen and thermophilic methane production from wheat straw hydrolysate was investigated in up-flow anaerobic sludge bed (UASB) reactors. Specific hydrogen and methane yields of 89 ml-H(2)/g-VS (190 ml-H(2)/g-sugars) and 307 ml-CH(4)/g-VS, respectively were achieved simultaneously with the overall VS removal efficiency of 81% by operating with total hydraulic retention time (HRT) of 4 days . The energy conversion efficiency was dramatically increased from only 7.5% in the hydrogen stage to 87.5% of the potential energy from hydrolysate, corresponding to total energy of 13.4 kJ/g-VS. Dominant hydrogen-producing bacteria in the H(2)-UASB reactor were Thermoanaerobacter wiegelii, Caldanaerobacter subteraneus, and Caloramator fervidus. Meanwhile, the CH(4)-UASB reactor was dominated with methanogens of Methanosarcina mazei and Methanothermobacter defluvii. The results from this study suggest the two stage anaerobic process can be effectively used for energy recovery and for stabilization of hydrolysate at anaerobic conditions.


Engineering in Life Sciences | 2013

Hydrogen and methane production from desugared molasses using a two-stage thermophilic anaerobic process

Prawit Kongjan; Sompong O-Thong; Irini Angelidaki

Hydrogen and methane production from desugared molasses by a two‐stage thermophilic anaerobic process was investigated in a series of two up‐flow anaerobic sludge blanket (UASB) reactors. The first reactor that was dominated with hydrogen‐producing bacteria of Thermoanaerobacterium thermosaccharolyticum and Thermoanaerobacterium aciditolerans could generate a high hydrogen production rate of 5600 mL H2/day/L, corresponding to a yield of 132 mL H2/g volatile solid (VS). The effluent from the hydrogen reactor was further converted to methane in the second reactor with the optimal production rate of 3380 mL CH4/day/L, corresponding to a yield of 239 mL CH4/g VS. Aceticlastic Methanosarcina mazei was the dominant methanogen in the methanogenesis stage. This work demonstrates that biohydrogen production can be very efficiently coupled with a subsequent step of methane production using desugared molasses. Furthermore, the mixed gas with a volumetric content of 16.5% H2, 38.7% CO2, and 44.8% CH4, containing approximately 15% energy by hydrogen is viable to be bio‐hythane.


Bioresource Technology | 2015

Bio-hydrogen and bio-methane potentials of skim latex serum in batch thermophilic two-stage anaerobic digestion

Rattana Jariyaboon; Sompong O-Thong; Prawit Kongjan

Anaerobic digestion by two-stage process, containing hydrogen-producing (acidogenic) first stage and methanogenic second stage, has been proposed to degrade substrates which are difficult to be treated by single stage anaerobic digestion process. This research was aimed to evaluate the bio-hydrogen and the bio-methane potentials (BHP and BMP) of skim latex serum (SLS) by using sequential batch hydrogen and methane cultivations at thermophilic conditions (55°C) and with initial SLS concentrations of 37.5-75.0% (v/v). The maximal 1.57 L H2/L SLS for BHP and 12.2L CH4/L SLS for BMP were both achieved with 60% (v/v) SLS. The dominant hydrogen-producing bacteria in the H2 batch reactor were Thermoanaerobacterium sp. and Clostrdium sp. Meanwhile, the CH4 batch reactor was dominated by the methanogens Methanosarcina mazei and Methanothermobacter defluvii. The results demonstrate that SLS can be degraded by conversion to form hydrogen and methane, waste treatment and bioenergy production are thus combined.


Bioresource Technology | 2016

Optimization and microbial community analysis for production of biogas from solid waste residues of palm oil mill industry by solid-state anaerobic digestion.

Wantanasak Suksong; Prawit Kongjan; Poonsuk Prasertsan; Tsuyoshi Imai; Sompong O-Thong

This study investigated the improvement of biogas production from solid-state anaerobic digestion (SS-AD) of oil palm biomass by optimizing of total solids (TS) contents, feedstock to inoculum (F:I) ratios and carbon to nitrogen (C:N) ratios. Highest methane yield from EFB, OPF and OPT of 358, 280 and 324m(3)CH4ton(-1)VS, respectively, was achieved at TS content of 16%, C:N ratio of 30:1 and F:I ratio of 2:1. The main contribution to methane from biomass was the degradation of cellulose and hemicellulose. The highest methane production of 72m(3)CH4ton(-1) biomass was achieved from EFB. Bacteria community structure in SS-AD process of oil palm biomass was dominated by Ruminococcus sp. and Clostridium sp., while archaea community was dominated by Methanoculleus sp. Oil palm biomass has great potential for methane production via SS-AD.


PLOS ONE | 2017

Effect of biogas sparging on the performance of bio-hydrogen reactor over a long-term operation.

Chatchawin Nualsri; Prawit Kongjan; Alissara Reungsang; T. Imai

This study aimed to enhance hydrogen production from sugarcane syrup by biogas sparging. Two-stage continuous stirred tank reactor (CSTR) and upflow anaerobic sludge blanket (UASB) reactor were used to produce hydrogen and methane, respectively. Biogas produced from the UASB was used to sparge into the CSTR. Results indicated that sparging with biogas increased the hydrogen production rate (HPR) by 35% (from 17.1 to 23.1 L/L.d) resulted from a reduction in the hydrogen partial pressure. A fluctuation of HPR was observed during a long term monitoring because CO2 in the sparging gas and carbon source in the feedstock were consumed by Enterobacter sp. to produce succinic acid without hydrogen production. Mixed gas released from the CSTR after the sparging can be considered as bio-hythane (H2+CH4). In addition, a continuous sparging biogas into CSTR release a partial pressure in the headspace of the methane reactor. In consequent, the methane production rate is increased.


INTERNATIONAL CONFERENCE ON MATHEMATICS, ENGINEERING AND INDUSTRIAL APPLICATIONS 2016 (ICoMEIA2016): Proceedings of the 2nd International Conference on Mathematics, Engineering and Industrial Applications 2016 | 2016

Analysis and extension of Gompertz-type and Monod-type equations for estimation of design parameters from batch anaerobic digestion experiments

Chairat Siripatana; Sunwanee Jijai; Prawit Kongjan

Gompertz equation, particularly its modified form is widely used to describe growth and product formation data for various types of dynamically biological systems. In anaerobic digestion, it becomes a fashion to use it as an empirical representation of biogas/methane/hydrogen accumulation data although its physical meaning is sometimes obscured. This work outlines the use of Gompertz-type model and its related extensions in more systematic and meaningful manners. Firstly these time-derivative rate equations were reformulated using unstructured reasoning which considered the effects of growth associated product formation and two forms of time-rate derivatives: Schnute postulate and Power law extension. The analysis revealed that this class of models predict non-zero product formation at zero time. Thus we propose their corrected forms to be used for meaningful parameter estimation. Secondly, we compiled currently available solutions for most popular Monod-type models for batch digestion. Some solutions wer...

Collaboration


Dive into the Prawit Kongjan's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Irini Angelidaki

Technical University of Denmark

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Rattana Jariyaboon

Prince of Songkla University

View shared research outputs
Top Co-Authors

Avatar

Poonsuk Prasertsan

Prince of Songkla University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge