Preben Olsen
Aarhus University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Preben Olsen.
Science of The Total Environment | 2015
Panos Panagos; Christiano Ballabio; Pasquale Borrelli; Katrin Meusburger; Andreas Klik; Svetla Rousseva; Melita Perčec Tadić; Silas Michaelides; Michaela Hrabalíková; Preben Olsen; Juha Aalto; Mónika Lakatos; A. Rymszewicz; Alexandru Dumitrescu; Santiago Beguería; Christine Alewell
Rainfall is one the main drivers of soil erosion. The erosive force of rainfall is expressed as rainfall erosivity. Rainfall erosivity considers the rainfall amount and intensity, and is most commonly expressed as the R-factor in the USLE model and its revised version, RUSLE. At national and continental levels, the scarce availability of data obliges soil erosion modellers to estimate this factor based on rainfall data with only low temporal resolution (daily, monthly, annual averages). The purpose of this study is to assess rainfall erosivity in Europe in the form of the RUSLE R-factor, based on the best available datasets. Data have been collected from 1541 precipitation stations in all European Union (EU) Member States and Switzerland, with temporal resolutions of 5 to 60 min. The R-factor values calculated from precipitation data of different temporal resolutions were normalised to R-factor values with temporal resolutions of 30 min using linear regression functions. Precipitation time series ranged from a minimum of 5 years to a maximum of 40 years. The average time series per precipitation station is around 17.1 years, the most datasets including the first decade of the 21st century. Gaussian Process Regression (GPR) has been used to interpolate the R-factor station values to a European rainfall erosivity map at 1 km resolution. The covariates used for the R-factor interpolation were climatic data (total precipitation, seasonal precipitation, precipitation of driest/wettest months, average temperature), elevation and latitude/longitude. The mean R-factor for the EU plus Switzerland is 722 MJ mm ha(-1) h(-1) yr(-1), with the highest values (>1000 MJ mm ha(-1) h(-1) yr(-1)) in the Mediterranean and alpine regions and the lowest (<500 MJ mm ha(-1) h(-1) yr(-1)) in the Nordic countries. The erosivity density (erosivity normalised to annual precipitation amounts) was also the highest in Mediterranean regions which implies high risk for erosive events and floods.
Chemosphere | 2011
Jeanne Kjær; Vibeke Ernstsen; O. H. Jacobsen; Nis Hansen; Lis Wollesen de Jonge; Preben Olsen
Leaching of the strongly sorbing pesticides glyphosate and pendimethalin was evaluated in an 8-month field study focussing on preferential flow and particle-facilitated transport, both of which may enhance the leaching of such pesticides in structured soils. Glyphosate mainly sorbs to mineral sorption sites, while pendimethalin mainly sorbs to organic sorption sites. The two pesticides were applied in equal dosage to a structured, tile-drained soil, and the concentration of the pesticides was then measured in drainage water sampled flow-proportionally. The leaching pattern of glyphosate resembled that of pendimethalin, suggesting that the leaching potential of pesticides sorbed to either the inorganic or organic soil fractions is high in structured soils. Both glyphosate and pendimethalin leached from the root zone, with the average concentration in the drainage water being 3.5 and 2.7 μg L(-1), respectively. Particle-facilitated transport (particles >0.24 μm) accounted for only a small proportion of the observed leaching (13-16% for glyphosate and 16-31% for pendimethalin). Drain-connected macropores located above or in the vicinity of the drains facilitated very rapid transport of pesticide to the drains. That the concentration of glyphosate and pendimethalin in the drainage water remained high (>0.1 μg L(-1)) for up to 7d after a precipitation event indicates that macropores between the drains connected to underlying fractures were able to transport strongly sorbing pesticides in the dissolved phase. Lateral transport of dissolved pesticide via such discontinuities implies that strongly sorbing pesticides such as glyphosate and pendimethalin could potentially be present in high concentrations (>0.1 μg L(-1)) in both water originating from the drainage system and the shallow groundwater located at the depth of the drainage system.
Journal of Environmental Quality | 2013
Trine Norgaard; Per Moldrup; Preben Olsen; Anders Lindblad Vendelboe; Bo V. Iversen; Mogens Humlekrog Greve; Jeanne Kjær; Lis Wollesen de Jonge
Preferential flow and particle-facilitated transport through macropores contributes significantly to the transport of strongly sorbing substances such as pesticides and phosphorus. The aim of this study was to perform a field-scale characterization of basic soil physical properties like clay and organic carbon content and investigate whether it was possible to relate these to derived structural parameters such as bulk density and conservative tracer parameters and to actual particle and phosphorus leaching patterns obtained from laboratory leaching experiments. Sixty-five cylindrical soil columns of 20-cm height and 20-cm diameter and bulk soil were sampled from the topsoil in a 15-m × 15-m grid in an agricultural loamy field. Highest clay contents and highest bulk densities were found in the northern part of the field. Leaching experiments with a conservative tracer showed fast 5% tracer arrival times and high tracer recovery percentages from columns sampled from the northern part of the field, and the leached mass of particles and particulate phosphorus was also largest from this area. Strong correlations were obtained between 5% tracer arrival time, tracer recovery, and bulk density, indicating that a few well-aligned and better connected macropores might change the hydraulic conductivity between the macropores and the soil matrix, triggering an onset of preferential flow at lower rain intensities compared with less compacted soil. Overall, a comparison mapping of basic and structural characteristics including soil texture, bulk density, dissolved tracer, particle and phosphorus transport parameters identified the northern one-third of the field as a zone with higher leaching risk. This risk assessment based on parameter mapping from measurements on intact samples was in good agreement with 9 yr of pesticide detections in two horizontal wells and with particle and phosphorus leaching patterns from a distributed, shallow drainage pipe system across the field.
Chemosphere | 2012
Lisbeth Flindt Jørgensen; Jeanne Kjær; Preben Olsen; Annette E. Rosenbom
The objective was to estimate leaching of the fungicide azoxystrobin (methyl (αE)-2-[[6-(2-cyanophenoxy)-4-pyrimidinyl]oxy]-α-(methoxymethylene)benzene-acetate) and one of its primary degradation products R234886 ([(E)-2-(2-[6-cyanophenoxy)-pyrimidin-4-yloxyl]-phenyl-3-methoxyacrylic acid], major fraction) at four agricultural research fields (one sandy and three loamy) in Denmark. Water was sampled from tile drains, suction cups and groundwater wells for a minimum period of two years after application of azoxystrobin. Neither azoxystrobin nor R234886 were detected at the sandy site, but did leach through loamy soils. While azoxystrobin was generally only detected during the first couple of months following application, R234886 leached for a longer period of time and at higher concentrations (up to 2.1μgL(-1)). Azoxystrobin is classified as very toxic to aquatic organisms and R234886 as very harmful. Our study shows that azoxystrobin and R234886 can leach through loamy soils for a long period of time following application of the pesticide and thereby pose a potential threat to vulnerable aquatic environments and drinking water resources. We thus recommend the inclusion of azoxystrobin and R234886 in pesticide monitoring programmes and further investigation of their long-term ecotoxicological effects.
Science of The Total Environment | 2017
Cristiano Ballabio; Pasquale Borrelli; Jonathan Spinoni; Katrin Meusburger; Silas Michaelides; Santiago Beguería; Andreas Klik; Sašo Petan; Miloslav Janeček; Preben Olsen; Juha Aalto; Mónika Lakatos; A. Rymszewicz; Alexandru Dumitrescu; Melita Perčec Tadić; Nazzareno Diodato; Julia Kostalova; Svetla Rousseva; Kazimierz Banasik; Christine Alewell; Panos Panagos
Rainfall erosivity as a dynamic factor of soil loss by water erosion is modelled intra-annually for the first time at European scale. The development of Rainfall Erosivity Database at European Scale (REDES) and its 2015 update with the extension to monthly component allowed to develop monthly and seasonal R-factor maps and assess rainfall erosivity both spatially and temporally. During winter months, significant rainfall erosivity is present only in part of the Mediterranean countries. A sudden increase of erosivity occurs in major part of European Union (except Mediterranean basin, western part of Britain and Ireland) in May and the highest values are registered during summer months. Starting from September, R-factor has a decreasing trend. The mean rainfall erosivity in summer is almost 4 times higher (315 MJ mm ha− 1 h− 1) compared to winter (87 MJ mm ha− 1 h− 1). The Cubist model has been selected among various statistical models to perform the spatial interpolation due to its excellent performance, ability to model non-linearity and interpretability. The monthly prediction is an order more difficult than the annual one as it is limited by the number of covariates and, for consistency, the sum of all months has to be close to annual erosivity. The performance of the Cubist models proved to be generally high, resulting in R2 values between 0.40 and 0.64 in cross-validation. The obtained months show an increasing trend of erosivity occurring from winter to summer starting from western to Eastern Europe. The maps also show a clear delineation of areas with different erosivity seasonal patterns, whose spatial outline was evidenced by cluster analysis. The monthly erosivity maps can be used to develop composite indicators that map both intra-annual variability and concentration of erosive events. Consequently, spatio-temporal mapping of rainfall erosivity permits to identify the months and the areas with highest risk of soil loss where conservation measures should be applied in different seasons of the year.
Chemosphere | 2010
Annette E. Rosenbom; Jeanne Kjær; Preben Olsen
The objective was to quantify leaching of the widely used low-dosage sulfonylurea herbicides rimsulfuron and its primary degradation products IN70941 ([N-(4,6-dimethoxypyrimidin-2-yl)-N-((3-ethylsulfonyl)-2-pyridinyl)urea]) and IN70942 ([N-((3-ethylsulfonyl)-2-pyridinyl)-4,6-dimethoxy-2-pyrimidineamine]) at two sandy research fields in Denmark. Water was sampled monthly from the vadose and groundwater zones at the two sites (Tylstrup and Jyndevad) over a 4-6-year period following application of rimsulfuron. No rimsulfuron was detected in the water samples. At the Jyndevad site, IN70941 was detected in the vadose zone at a depth of 1m for as long as three years in annual average concentrations exceeding the EU limit value for drinking water of 0.1microgL(-1). At the Tylstrup site, IN70941 was detected at a depth of 2m in concentrations just below 0.1microgL(-1). The groundwater concentration of IN70941 occasionally exceeded 0.1microgL(-1) at the Jyndevad site, but is only detected on one occasion (and at a low concentration) at the Tylstrup site. At both sites IN70941 was relatively stable and persisted in the soil water for several years, with relatively little degrading further to IN70942. Thus, the concentration of IN7092 was much lower and apart from four samples from the Jyndevad site, never exceeded 0.1microgL(-1). Nevertheless, our findings show that degradation products of rimsulfuron can leach through sandy soils in relatively high concentrations and could potentially contaminate vulnerable aquatic environments. In view of this risk, IN70941 and IN70942 should be included in pesticide monitoring programmes, and their long-term ecotoxicological effects should be investigated further.
Environmental Pollution | 2015
Annette E. Rosenbom; Preben Olsen; Finn Plauborg; Ruth Grant; René K. Juhler; Walter Brüsch; Jeanne Kjær
The European Union authorization procedure for pesticides includes an assessment of the leaching risk posed by pesticides and their degradation products (DP) with the aim of avoiding any unacceptable influence on groundwater. Twelve-years results of the Danish Pesticide Leaching Assessment Programme reveal shortcomings to the procedure by having assessed leaching into groundwater of 43 pesticides applied in accordance with current regulations on agricultural fields, and 47 of their DP. Three types of leaching scenario were not fully captured by the procedure: long-term leaching of DP of pesticides applied on potato crops cultivated in sand, leaching of strongly sorbing pesticides after autumn application on loam, and leaching of various pesticides and their DP following early summer application on loam. Rapid preferential transport that bypasses the retardation of the plow layer primarily in autumn, but also during early summer, seems to dominate leaching in a number of those scenarios.
Science of The Total Environment | 2016
Zuzana Frková; Anders Johansen; Lis Wollesen de Jonge; Preben Olsen; Ulrich Gosewinkel; Kai Bester
Phenoxy acid-contaminated subsoils are common as a result of irregular disposal of residues and production wastes in the past. For enhancing in situ biodegradation at reducing conditions, biostimulation may be an effective option. Some phenoxy acids were marketed in racemic mixtures, and biodegradation rates may differ between enantiomers. Therefore, enantio-preferred degradation of mecoprop (MCPP) in soil was measured to get in-depth information on whether amendment with glucose (BOD equivalents as substrate for microbial growth) and nitrate (redox equivalents for oxidation) can stimulate bioremediation. The degradation processes were studied in soil sampled at different depths (3, 4.5 and 6m) at a Danish urban site with a history of phenoxy acid contamination. We observed preferential degradation of the R-enantiomer only under aerobic conditions in the soil samples from 3- and 6-m depth at environmentally relevant (nM) MCPP concentrations: enantiomer fraction (EF)<0.5. On the other hand, we observed preferential degradation of the S-enantiomer in all samples and treatments at elevated (μM) MCPP concentrations: EF>0.5. Three different microbial communities were discriminated by enantioselective degradation of MCPP: 1) aerobic microorganisms with little enantioselectivity, 2) aerobic microorganisms with R-selectivity and 3) anaerobic denitrifying organisms with S-selectivity. Glucose-amendment did not enhance MCPP degradation, while nitrate amendment enhanced the degradation of high concentrations of the herbicide.
Environmental Science & Technology | 2015
Nora Badawi; Annette E. Rosenbom; Preben Olsen; Sebastian R. Sørensen
The herbicide fluazifop-P-butyl (FPB) is used against grasses in agricultural crops such as potato, oilseed rape, and sugar beet. Limited information is available in scientific literature on its environmental fate, therefore extensive monitoring at two agricultural test fields was combined with laboratory studies to determine leaching and the underlying degradation and sorption processes. Water samples from drains, suction cups, and groundwater wells showed leaching of the degradation products fluazifop-P (FP) and 2-hydroxy-5-trifluoromethyl-pyridin (TFMP) following FPB treatment. Laboratory experiments with soil from each field revealed a rapid degradation of FPB to FP. The degradation was almost exclusively microbial, and further biodegradation to TFMP occurred at a slower rate. Both degradation products were sorbed to the two soils to a small extent and were fairly persistent to degradation during the two-month incubation period. Together, the field and laboratory results from this study showed that the biodegradation of FPB in loamy soils gave rise to the production of two major degradation products that sorbed to a small extent. In this study, both degradation products leached to drainage and groundwater during precipitation. It is therefore recommended that these degradation products be included in programs monitoring water quality in areas with FPB use.
Journal of Environmental Quality | 2014
Trine Norgaard; Per Moldrup; Ty P. A. Ferré; Sheela Katuwal; Preben Olsen; L. W. de Jonge
Water-dispersible soil colloids (WDC) act as carriers for sorbing chemicals in macroporous soils and hence constitute a significant risk for the aquatic environment. The prediction of WDC readily available for facilitated chemical transport is an unsolved challenge. This study identifies key parameters and predictive indicators for assessing field-scale variation of WDC. Samples representing three measurement scales (1- to 2-mm aggregates, intact 100-cm rings, and intact 6283 cm columns) were retrieved from the topsoil of a 1.69-ha agricultural field in a 15-m by 15-m grid to determine colloid dispersibility, mobilization, and transport. The amount of WDC was determined using (i) a laser diffraction method on 1- to 2-mm aggregates and (ii) an end-over-end shaking method on 100-cm intact rings. The accumulated amount of colloids leached from 20-cm by 20-cm intact columns was determined as a measure of the integrated colloid mobilization and transport. The WDC and the accumulated colloid transport were higher in samples from the northern part of the field. Using multiple linear regression (MLR) analyses, WDC or amount of colloids transported were predicted at the three measurement scales from 24 measured, geo-referenced parameters to identify parameters that could serve as indicator parameters for screening for colloid dispersibility, mobilization, and transport. The MLR analyses were performed at each sample scale using all, only northern, and only southern field locations. Generally, the predictive power of the regression models was best on the smallest 1- to 2-mm aggregate scale. Overall, our results suggest that different drivers controlled colloid dispersibility and transport at the three measurement scales and in the two subareas of the field.