Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Preeti Bajpai is active.

Publication


Featured researches published by Preeti Bajpai.


BioMed Research International | 2014

Phytochemical Evaluation, Antimicrobial Activity, and Determination of Bioactive Components from Leaves of Aegle marmelos

Farina Mujeeb; Preeti Bajpai; Neelam Pathak

The therapeutic value of Aegle marmelos Correa (Rutaceae), commonly known as ‘‘Bael,” has been recognized as a component of traditional medication for the treatment of various human ailments. The plant, though, being highly explored, still lacks sufficient evidences for the best variety possessing the highest degree of medicinal values. The present study is focused on phytochemical screening of aqueous and methanolic leaf extracts of 18 varieties/accessions of A. marmelos. The crude extracts of A. marmelos revealed the presence of several biologically active phytochemicals with the highest quantity of alkaloids, flavonoids, and phenols in Pant Aparna variety. The antibacterial efficacy was investigated against pathogenic bacterial strains and the highest inhibitory activity of aqueous extract was obtained against S. epidermidis, whereas methanolic extract was found to be most potent against S. aureus at 40 mg/mL concentration. However, in aqueous : ethanol, the best results were observed against E. aerogenes followed by K. pneumonia and S. epidermidis. The MIC of aqueous and methanol extract of Aegle marmelos ranged from 10 mg/mL to 40 mg/mL whereas in aqueous : ethanol it ranged between 40 mg/mL and 160 mg/mL. The GC-MS analysis revealed the presence of many bioactive compounds such as flavonoids, alcohols, aldehydes, aromatic compounds, fatty acid methyl esters, terpenoids, phenolics, and steroids that can be postulated for antibacterial activity.


American Journal of Obstetrics and Gynecology | 2011

Apoptosis induction and inhibition of hyperplasia formation by 2-[piperidinoethoxyphenyl]-3-[4-hydroxyphenyl]-2H-benzo(b)pyran in rat uterus.

Vishal Chandra; Iram Fatima; Ruchi Saxena; Shakti Kitchlu; Sharad Sharma; Mohammad Kamil Hussain; Kanchan Hajela; Preeti Bajpai; Anila Dwivedi

OBJECTIVE The study was undertaken to explore the antiproliferative mechanism of action of 2-[piperidinoethoxyphenyl]-3-[4-hydroxyphenyl]-2H-benzo(b)pyran (K-1) in estradiol-induced rat uterine hyperplasia. STUDY DESIGN Adult ovariectomized rats received vehicle or estradiol alone (20 μg/kg) or estradiol along with K-1 (100 or 200 μg/kg) for 14 days. Uterine histomorphometric analysis and immunoblotting were performed. Caspase-3 activity and terminal deoxynucleotidyl transferase-mediated nick end-labeling staining were performed to analyze the apoptotic potential of compound. RESULTS Compound inhibited estradiol-induced uterine weight and histomorphometric changes pertaining to endometrial growth and down-regulated the expression of estrogen response element and activator protein-1 regulated genes and transcription factors. The compound significantly induced apoptosis, interfered with Akt activation, decreased X-linked inhibitor of apoptosis protein expression leading to an increased cleavage of caspase-9, caspase-3, poly(adenosine diphosphate-ribose) polymerase, increased Bax/Bcl2 ratio, and caspase-3 activity. CONCLUSION K-1 inhibits endometrial proliferation via nonclassical estrogen receptor signaling mechanisms. It interfered with Akt activation and induced apoptosis via the intrinsic pathway and inhibited estradiol-induced hyperplasia formation in rat uterus.


Journal of global antimicrobial resistance | 2016

Extracellular mycosynthesis of silver nanoparticles and their microbicidal activity

Faria Fatima; Smita Rastogi Verma; Neelam Pathak; Preeti Bajpai

Myconanotechnology, a combination of mycology and nanotechnology that deals with the synthesis of nanoparticles using fungi or their metabolites, has great potential in the area of agriculture owing to the high surface-to-volume ratio and excellent biomedical, electronic, mechanical and physicochemical properties of these myconanoparticles. Extracellular mycosynthesis of Aspergillus flavus (KF934407) silver nanoparticles (AgNPs) was performed, which were produced by redox reaction. Furthermore, the extracellular synthesised AgNPs were characterised by ultraviolet/visible spectrophotometry, differential light scattering (DLS) and transmission electron microscopy. The bactericidal and fungicidal actions of synthesised silver myconanoparticles (myco-AgNPs) were studied against pathogenic bacteria and fungi. The formulated myco-AgNPs were spherical in shape, with a size in the range of 50nm and DLS at an intensity of 107.8nm. The myco-AgNPs showed effective antimicrobial properties against Staphylococcus aureus, Bacillus subtilis, Escherichia coli and Trichoderma spp. at high concentrations. In conclusion, AgNPs have a prolonged microbicidal effect as a result of continuous release of Ag+ at sufficient concentrations. Thus, A. flavus-based myco-AgNPs have the potential to be used as a non-toxic and cheap antimicrobial agent against various pathogenic bacteria and fungi.


Biotechnology and Applied Biochemistry | 2016

In silico analysis of human Toll-like receptor 7 ligand binding domain.

Chhedi Lal Gupta; Salman Akhtar; Uzma Sayyed; Neelam Pathak; Preeti Bajpai

Toll‐like receptors recognizing pathogen‐associated molecular patterns are preface actors for innate immunity. Among them TLR7 is a transmembrane protein playing very crucial role in the signaling pathways involved in innate immunity by recognizing viral ssRNA and specific small molecule agonists. The unavailability of experimental 3D structure of this receptor till date hampers the focused exploration of TLR7 interaction with its ligands. However, several proteins possessing high homology domain enabled us to construct a reliable 3D model of hTLR7 ECD, which was employed to generate the homodimer model using protein–protein docking strategy. Further molecular docking studies between developed homodimer model and ligands were performed to explore the most preferred site of hTLR7 ECD interacting with ligands. The comparative analysis of docking energies and protein–ligand interactions of all the ligands revealed resiquimod as the prominent agonist. Furthermore, molecular interactions between protein–ligand complexes suggested LRR15 and LRR16 region of hTLR7 ECD as the most preferential site for ligand binding. The Ser434 and Gly437 of LRR15 region of hTLR7 were found to be conserved with Drosophila Toll protein. The obtained complex model may lead to a better understanding of TLR7 functioning along with its inheritance from invertebrates to mammals.


Interdisciplinary Sciences: Computational Life Sciences | 2014

In silico Elucidation and Inhibition Studies of Selected Phytoligands Against Mitogen Activated Protein Kinases of Protozoan Parasites

Chhedi Lal Gupta; Salman Akhtar; Nilesh Kumar; Jasarat Ali; Neelam Pathak; Preeti Bajpai

Parasitic MAPKs exhibiting significant divergence with humans and playing an imperative role in parasitic metabolic activities have been exploited from several years as important targets for development of novel therapeutics. In addition, the emergence of the drug-resistant variants of parasitic diseases in the recent years has aroused a great need for the development of potent inhibitors against them. In the present study, we selected the metabolically active MAPKs LmxMPK4, PfMAP2 and TbMAPK5 of the three parasitic protozoans Leishmania mexicana, Plasmodium falciparum and Trypanosoma brucei, respectively. The homology modeling technique was used to develop the 3D structures of these proteins, and the same was validated by PROCHECK, ERRAT, ProQ and ProSA web servers to check the reliability. Ten phytoligands were employed for molecular docking studies with these proteins to search for potent phytoligand as a broad spectrum inhibitor. In this regard, two phytoligands (aspidocarpine for LmxMPK4 and TbMAPK5 and cubebin for PfMAP2) were found to be more effective inhibitors, in terms of robust binding energy, strong inhibition constant and better interactions between protein–ligand complexes. Furthermore, predicted ADME and toxicity properties suggested that these identified phytoligands exhibited comparable results to control drugs potentiating them as persuasive therapeutic agents for Leishmania, Trypanosoma and Plasmodium sp.


Archive | 2017

Genetic Diversity Analysis of Medicinally Important Horticultural Crop Aegle marmelos by ISSR Markers

Farina Mujeeb; Preeti Bajpai; Neelam Pathak; Smita Rastogi Verma

Inter simple sequence repeat (ISSR) markers help in identifying and determining the extent of genetic diversity in cultivars. Here, we describe their application in determining the genetic diversity of bael (Aegle marmelos Corr.). Universal ISSR primers are selected and their marker characteristics such as polymorphism information content, effective multiplex ratio and marker index have been evaluated. ISSR-PCR is then performed using universal ISSR primers to generate polymorphic bands. This information is used to determine the degree of genetic similarity among the bael varieties/accessions by cluster analysis using unweighted pair-group method with arithmetic averages (UPGMA). This technology is valuable for biodiversity conservation and for making an efficient choice of parents in breeding programs.


Biochemical and Biophysical Research Communications | 2015

Cross talk between Leishmania donovani CpG DNA and Toll-like receptor 9: An immunoinformatics approach

Chhedi Lal Gupta; Salman Akhtar; Andrew Waye; Nihar R. Pandey; Neelam Pathak; Preeti Bajpai

The precise and potential contribution of Toll-like receptors (TLRs) signaling pathways in fighting parasitic infections of Leishmania spp., an intracellular protozoan parasite, has gained significant attention during the last decades. Although it is well established that TLR9 recognizes CpG motifs in microbial genomes, the specificity of the CpG DNA pattern of Leishmania parasite interacting with endosomal TLR9 is still unknown. Hence in our study to identify the CpG DNA pattern of Leishmania donovani acting as ligand for TLR9, consecutive homology searches were performed using known CpG ODN 2216 as initial template until a consistent CpG pattern in L. donovani was found. A reliable model of TLR9 ectodomains (ECDs) as well as CpG DNA patterns was predicted to develop the 3D structural complexes of TLR9 ECD-CpG DNA utilizing molecular modeling and docking approaches. The results revealed the preferential specificity of L. donovani CpG DNA to TLR9 compared to control ODN and other CpG patterns. The interface between TLR9 and L. donovani CpG DNA was also found to be geometrically complementary with the LRR11 region of TLR9, acting as the critical region for ligand recognition. The L. donovani CpG pattern identified can be employed to derive a platform for development of an innate immunomodulatory agent for deadly disease.


Chemico-Biological Interactions | 2014

Diethyl maleate inhibits MCA+TPA transformed cell growth via modulation of GSH, MAPK, and cancer pathways

Shivam Priya; Akanksha Nigam; Preeti Bajpai; Sushil Kumar

Murine or human cancer cells have high glutathione levels. Depletion of the elevated GSH inhibits proliferation of cancer cells. Molecular basis for this observation is little understood. In an attempt to find out the underlying mechanism, we reproduced these effects in transformed C3H10T1/2 and BALB/c 3T3 cells using diethyl maleate and studied cytogenomic changes in the whole mouse genome using spotted 8 × 60 K arrays. Transformed cells revealed an increase in GSH levels. GSH depletion by DEM inhibited the growth of transformed cells. The non-cytotoxic dose of DEM (0.25 mM) resulted in GSH depletion, ROS generation, cell cycle arrest, apoptosis, decrease in anchorage independent growth, gene expression changes and activation of all three members of the MAPK family. Increase in intracellular GSH levels by GSHe countered the effect of DEM. These results support the physiological importance of GSH in regulation of gene expression for transformed cell growth restraint. This study is of interest in not only understanding the molecular biology of the transformed cells, but also in identifying new targets for development of gene therapy together with the chemotherapy.


Environmental Toxicology and Pharmacology | 2013

Lipoic acid prevents Cr6+ induced cell transformation and the associated genomic dysregulation

Sushil Kumar; Akanksha Nigam; Shivam Priya; Preeti Bajpai; Roli Budhwar

Investigation of the transcription profile of cells transformed by Cr(6+) in vivo was undertaken. The objective was to elucidate genomic changes underlying the mechanism of action of the carcinogenic dose of Cr(6+)and their prevention using metabolic antioxidant lipoic acid (LA). Cr(6+) was administered intraperitoneally to LPS+TPA challenged Swiss albino mice in host mediated cell transformation assay using peritoneal macrophages in vivo. The cell transforming potential of Cr(6+) test doses was validated by gain of anchorage independent growth potential in soft agar and loss of Fc receptor on target cells. LA was administered in equimolar doses. Compared to non-transformed cells, the gene expression profile of transformed cells was found to be dysregulated substantially and in dose dependent manner. Genes showing down regulation were found to be involved in tumour suppression, apoptosis, DNA repair, and cell-cycle. A similar response was noted in the genes pertaining to immune system, morphogenesis, cell-communication, energy-metabolism, and biosynthesis. The co-administration of lipoic acid prevented the transcription dysregulation and cell transformation by Cr(6+) in vivo. The influenced pathways seem to be crucial for progression as well as mitigation of Cr toxicity; and their response to LA indicated their critical role in mechanism of anti-carcinogenic action of LA. Results are of importance to mitigate Cr(6+) induced occupational cancer hazard.


PLOS Neglected Tropical Diseases | 2014

Wolbachia transcription elongation factor "Wol GreA" interacts with α2ββ'σ subunits of RNA polymerase through its dimeric C-terminal domain.

Jeetendra Kumar Nag; Nidhi Shrivastava; Dhanvantri Chahar; Chhedi Lal Gupta; Preeti Bajpai; Shailja Misra-Bhattacharya

Objectives Wolbachia, an endosymbiont of filarial nematode, is considered a promising target for therapy against lymphatic filariasis. Transcription elongation factor GreA is an essential factor that mediates transcriptional transition from abortive initiation to productive elongation by stimulating the escape of RNA polymerase (RNAP) from native prokaryotic promoters. Upon screening of 6257 essential bacterial genes, 57 were suggested as potential future drug targets, and GreA is among these. The current study emphasized the characterization of Wol GreA with its domains. Methodology/Principal Findings Biophysical characterization of Wol GreA with its N-terminal domain (NTD) and C-terminal domain (CTD) was performed with fluorimetry, size exclusion chromatography, and chemical cross-linking. Filter trap and far western blotting were used to determine the domain responsible for the interaction with α2ββ′σ subunits of RNAP. Protein-protein docking studies were done to explore residual interaction of RNAP with Wol GreA. The factor and its domains were found to be biochemically active. Size exclusion and chemical cross-linking studies revealed that Wol GreA and CTD exist in a dimeric conformation while NTD subsists in monomeric conformation. Asp120, Val121, Ser122, Lys123, and Ser134 are the residues of CTD through which monomers of Wol GreA interact and shape into a dimeric conformation. Filter trap, far western blotting, and protein-protein docking studies revealed that dimeric CTD of Wol GreA through Lys82, Ser98, Asp104, Ser105, Glu106, Tyr109, Glu116, Asp120, Val121, Ser122, Ser127, Ser129, Lys140, Glu143, Val147, Ser151, Glu153, and Phe163 residues exclusively participates in binding with α2ββ′σ subunits of polymerase. Conclusions/Significance To the best of our knowledge, this research is the first documentation of the residual mode of action in wolbachial mutualist. Therefore, findings may be crucial to understanding the transcription mechanism of this α-proteobacteria and in deciphering the role of Wol GreA in filarial development.

Collaboration


Dive into the Preeti Bajpai's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Chhedi Lal Gupta

Indian Veterinary Research Institute

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Shivam Priya

Indian Institute of Toxicology Research

View shared research outputs
Top Co-Authors

Avatar

Akanksha Nigam

Indian Institute of Toxicology Research

View shared research outputs
Top Co-Authors

Avatar

Smita Rastogi Verma

Delhi Technological University

View shared research outputs
Top Co-Authors

Avatar

Sushil Kumar

Indian Institute of Toxicology Research

View shared research outputs
Top Co-Authors

Avatar

Dhanvantri Chahar

Central Drug Research Institute

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge