Prem Raj B. Joseph
University of Texas Medical Branch
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Prem Raj B. Joseph.
Biochemistry | 2009
Aishwarya Ravindran; Prem Raj B. Joseph; Krishna Rajarathnam
Interleukin-8 (IL-8 or CXCL8) plays a critical role in orchestrating the immune response by binding and activating the receptor CXCR1 that belongs to the GPCR class. IL-8 exists as both monomers and dimers, and both bind CXCR1 but with differential affinities. It is well established that the monomer is the high-affinity ligand and that the interactions between the ligand N-loop and receptor N-domain play a critical role in determining binding affinity. In order to characterize the structural basis of differential binding of the IL-8 monomer and dimer to the CXCR1 N-domain, we analyzed binding-induced NMR chemical shift and peak intensity changes and show that they are exquisitely sensitive and can provide detailed insights into the binding process. We used three IL-8 variants, a designed monomer, a trapped disulfide-linked dimer, and WT at dimeric concentrations. NMR data for the monomer show that nonsequential residues that span the entire N-loop are involved in the binding process and that the binding is mediated by a network of extensive direct and indirect coupled interactions. Interestingly, in the case of WT, binding induces dissociation of the dimer-receptor complex to the monomer-receptor complex, and in the case of the trapped dimer, binding results in increased global conformational flexibility. Increased dynamics is evidence of unfavorable interactions, indicating that binding of the WT dimer triggers conformational changes that disrupt dimer-interface interactions, resulting in its dissociation. These results together provide evidence that binding is not a localized event but results in extensive coupled interactions within the monomer and across the dimer interface and that these interactions play a fundamental role in determining binding affinity.
Journal of Biological Chemistry | 2013
Krishna Mohan Poluri; Prem Raj B. Joseph; Kirti V. Sawant; Krishna Rajarathnam
Background: Glycosaminoglycan (GAG)-chemokine dimer interactions regulate neutrophil trafficking, but the molecular basis underlying their interactions is not well understood. Results: NMR studies of murine CXCL1 indicate that heparin spans the dimer interface and enhances its structural integrity and stability. Conclusion: Heparin binding modulates multiple structural properties of the chemokine dimer. Significance: This study provides novel structural insights into how chemokine dimers orchestrate neutrophil recruitment. Glycosaminoglycan (GAG)-bound and soluble chemokine gradients in the vasculature and extracellular matrix mediate neutrophil recruitment to the site of microbial infection and sterile injury in the host tissue. However, the molecular principles by which chemokine-GAG interactions orchestrate these gradients are poorly understood. This, in part, can be directly attributed to the complex interrelationship between the chemokine monomer-dimer equilibrium and binding geometry and affinities that are also intimately linked to GAG length. To address some of this missing knowledge, we have characterized the structural basis of heparin binding to the murine CXCL1 dimer. CXCL1 is a neutrophil-activating chemokine and exists as both monomers and dimers (Kd = 36 μm). To avoid interference from monomer-GAG interactions, we designed a trapped dimer (dCXCL1) by introducing a disulfide bridge across the dimer interface. We characterized the binding of GAG heparin octasaccharide to dCXCL1 using solution NMR spectroscopy. Our studies show that octasaccharide binds orthogonally to the interhelical axis and spans the dimer interface and that heparin binding enhances the structural integrity of the C-terminal helical residues and stability of the dimer. We generated a quadruple mutant (H20A/K22A/K62A/K66A) on the basis of the binding data and observed that this mutant failed to bind heparin octasaccharide, validating our structural model. We propose that the stability enhancement of dimers upon GAG binding regulates in vivo neutrophil trafficking by increasing the lifetime of “active” chemokines, and that this structural knowledge could be exploited for designing inhibitors that disrupt chemokine-GAG interactions and neutrophil homing to the target tissue.
Biochemical Journal | 2015
Prem Raj B. Joseph; Philip D. Mosier; Umesh R. Desai; Krishna Rajarathnam
Structural plasticity plays a major role in determining differential binding of CXCL8 monomer and dimer to glycosaminoglycans (GAGs) and that dimer is the high-affinity GAG ligand. We propose that these properties play important roles in orchestrating in vivo chemokine-mediated neutrophil function.
Journal of Biological Chemistry | 2010
Prem Raj B. Joseph; Jose Sarmiento; Anurag K. Mishra; Sandhya Thulasi Das; Roberto P. Garofalo; Javier Navarro; Krishna Rajarathnam
All chemokines share a common structural scaffold that mediate a remarkable variety of functions from immune surveillance to organogenesis. Chemokines are classified as CXC or CC on the basis of conserved cysteines, and the two subclasses bind distinct sets of GPCR class of receptors and also have markedly different quaternary structures, suggesting that the CXC/CC motif plays a prominent role in both structure and function. For both classes, receptor activation involves interactions between chemokine N-loop and receptor N-domain residues (Site-I), and between chemokine N-terminal and receptor extracellular/transmembrane residues (Site-II). We engineered a CC variant (labeled as CC-CXCL8) of the chemokine CXCL8 by deleting residue X (CXC → CC), and found its structure is essentially similar to WT. In stark contrast, CC-CXCL8 bound poorly to its cognate receptors CXCR1 and CXCR2 (Ki > 1 μm). Further, CC-CXCL8 failed to mobilize Ca2+ in CXCR2-expressing HL-60 cells or recruit neutrophils in a mouse lung model. However, most interestingly, CC-CXCL8 mobilizes Ca2+ in neutrophils and in CXCR1-expressing HL-60 cells. Compared with the WT, CC-CXCL8 binds CXCR1 N-domain with only ∼5-fold lower affinity indicating that the weak binding to intact CXCR1 must be due to its weak binding at Site-II. Nevertheless, this level of binding is sufficient for receptor activation indicating that affinity and activity are separable functions. We propose that the CXC motif functions as a conformational switch that couples Site-I and Site-II interactions for both receptors, and that this coupling is critical for high affinity binding but differentially regulates activation.
Protein Science | 2015
Prem Raj B. Joseph; Krishna Rajarathnam
Chemokine CXCL8 and its receptor CXCR1 are key mediators in combating infection and have also been implicated in the pathophysiology of various diseases including chronic obstructive pulmonary disease (COPD) and cancer. CXCL8 exists as monomers and dimers but monomer alone binds CXCR1 with high affinity. CXCL8 function involves binding two distinct CXCR1 sites – the N‐terminal domain (Site‐I) and the extracellular/transmembrane domain (Site‐II). Therefore, higher monomer affinity could be due to stronger binding at Site‐I or Site‐II or both. We have now characterized the binding of a human CXCR1 N‐terminal domain peptide (hCXCR1Ndp) to WT CXCL8 under conditions where it exists as both monomers and dimers. We show that the WT monomer binds the CXCR1 N‐domain with much higher affinity and that binding is coupled to dimer dissociation. We also characterized the binding of two CXCL8 monomer variants and a trapped dimer to two different hCXCR1Ndp constructs, and observe that the monomer binds with ∼10‐ to 100‐fold higher affinity than the dimer. Our studies also show that the binding constants of monomer and dimer to the receptor peptides, and the dimer dissociation constant, can vary significantly as a function of pH and buffer, and so the ability to observe WT monomer peaks is critically dependent on NMR experimental conditions. We conclude that the monomer is the high affinity CXCR1 agonist, that Site‐I interactions play a dominant role in determining monomer vs. dimer affinity, and that the dimer plays an indirect role in regulating monomer function.
Biochemical and Biophysical Research Communications | 2010
Prem Raj B. Joseph; Ziyan Yuan; Eric A. Kumar; G.L. Lokesh; Smitha Kizhake; Krishna Rajarathnam; Amarnath Natarajan
BRCT(BRCA1) plays a major role in DNA repair pathway, and does so by recognizing the conserved sequence pSXXF in its target proteins. Remarkably, tetrapeptides containing pSXXF motif bind with high specificity and micromolar affinity. Here, we have characterized the binding interactions of pSXXF tetrapeptides using NMR spectroscopy and calorimetry. We show that BRCT is dynamic and becomes structured on binding, that pSer and Phe residues dictate overall binding, and that the binding affinities of the tetrapeptides are intimately linked to structural and dynamic changes both in the BRCT(BRCA1) and tetrapeptides. These results provide critical insights for designing high-affinity BRCT(BRCA1) inhibitors.
Biochemical Journal | 2013
Prem Raj B. Joseph; Kirti V. Sawant; Angela Isley; Mesias Pedroza; Roberto P. Garofalo; Ricardo M. Richardson; Krishna Rajarathnam
Chemokines mediate diverse functions from organogenesis to mobilizing leucocytes, and are unusual agonists for class-A GPCRs (G-protein-coupled receptors) because of their large size and multi-domain structure. The current model for receptor activation, which involves interactions between chemokine N-loop and receptor N-terminal residues (Site-I) and between chemokine N-terminal and receptor extracellular loop/transmembrane residues (Site-II), fails to describe differences in ligand/receptor selectivity and the activation of multiple signalling pathways. In the present study, we show in neutrophil-activating chemokine CXCL8 that the highly conserved GP (glycine-proline) motif located distal to both N-terminal and N-loop residues couples Site-I and Site-II interactions. GP mutants showed large differences from native-like to complete loss of function that could not be correlated with the specific mutation, receptor affinity or subtype, or a specific signalling pathway. NMR studies indicated that the GP motif does not influence Site-I interactions, but molecular dynamics simulations suggested that this motif dictates substates of the CXCL8 conformational ensemble. We conclude that the GP motif enables diverse receptor functions by controlling cross-talk between Site-I and Site-II, and further propose that the repertoire of chemokine functions is best described by a conformational ensemble model in which a network of long-range coupled indirect interactions mediate receptor activity.
Biophysical Journal | 2013
Prem Raj B. Joseph; Krishna Mohan Poluri; Pavani Gangavarapu; Lavanya Rajagopalan; Sandeep K. Raghuwanshi; Ricardo M. Richardson; Roberto P. Garofalo; Krishna Rajarathnam
Proteins that exist in monomer-dimer equilibrium can be found in all organisms ranging from bacteria to humans; this facilitates fine-tuning of activities from signaling to catalysis. However, studying the structural basis of monomer function that naturally exists in monomer-dimer equilibrium is challenging, and most studies to date on designing monomers have focused on disrupting packing or electrostatic interactions that stabilize the dimer interface. In this study, we show that disrupting backbone H-bonding interactions by substituting dimer interface β-strand residues with proline (Pro) results in fully folded and functional monomers, by exploiting prolines unique feature, the lack of a backbone amide proton. In interleukin-8, we substituted Pro for each of the three residues that form H-bonds across the dimer interface β-strands. We characterized the structures, dynamics, stability, dimerization state, and activity using NMR, molecular dynamics simulations, fluorescence, and functional assays. Our studies show that a single Pro substitution at the middle of the dimer interface β-strand is sufficient to generate a fully functional monomer. Interestingly, double Pro substitutions, compared to single Pro substitution, resulted in higher stability without compromising native monomer fold or function. We propose that Pro substitution of interface β-strand residues is a viable strategy for generating functional monomers of dimeric, and potentially tetrameric and higher-order oligomeric proteins.
International Journal of Molecular Sciences | 2017
Aaron J. Brown; Prem Raj B. Joseph; Kirti V. Sawant; Krishna Rajarathnam
Chemokines mediate diverse fundamental biological processes, including combating infection. Multiple chemokines are expressed at the site of infection; thus chemokine synergy by heterodimer formation may play a role in determining function. Chemokine function involves interactions with G-protein-coupled receptors and sulfated glycosaminoglycans (GAG). However, very little is known regarding heterodimer structural features and receptor and GAG interactions. Solution nuclear magnetic resonance (NMR) and molecular dynamics characterization of platelet-derived chemokine CXCL7 heterodimerization with chemokines CXCL1, CXCL4, and CXCL8 indicated that packing interactions promote CXCL7-CXCL1 and CXCL7-CXCL4 heterodimers, and electrostatic repulsive interactions disfavor the CXCL7-CXCL8 heterodimer. As characterizing the native heterodimer is challenging due to interference from monomers and homodimers, we engineered a “trapped” disulfide-linked CXCL7-CXCL1 heterodimer. NMR and modeling studies indicated that GAG heparin binding to the heterodimer is distinctly different from the CXCL7 monomer and that the GAG-bound heterodimer is unlikely to bind the receptor. Interestingly, the trapped heterodimer was highly active in a Ca2+ release assay. These data collectively suggest that GAG interactions play a prominent role in determining heterodimer function in vivo. Further, this study provides proof-of-concept that the disulfide trapping strategy can serve as a valuable tool for characterizing the structural and functional features of a chemokine heterodimer.
Methods of Molecular Biology | 2015
Prem Raj B. Joseph; Krishna Mohan Poluri; Krishna Mohan Sepuru; Krishna Rajarathnam
Solution nuclear magnetic resonance (NMR) spectroscopy and, in particular, chemical shift perturbation (CSP) titration experiments are ideally suited for characterizing the binding interface of macromolecular complexes. (1)H-(15) N-HSQC-based CSP studies have become the method of choice due to their simplicity, short time requirements, and not requiring high-level NMR expertise. Nevertheless, CSP studies for characterizing protein-glycosaminoglycan (GAG) interactions have been challenging due to binding-induced aggregation/precipitation and/or poor quality data. In this chapter, we discuss how optimizing experimental variables such as protein concentration, GAG size, and sensitivity of NMR instrumentation can overcome these roadblocks to obtain meaningful structural insights into protein-GAG interactions.