Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Premanand Sundivakkam is active.

Publication


Featured researches published by Premanand Sundivakkam.


American Journal of Physiology-cell Physiology | 2009

Caveolin-1 scaffold domain interacts with TRPC1 and IP3R3 to regulate Ca2+ store release-induced Ca2+ entry in endothelial cells

Premanand Sundivakkam; Angela M. Kwiatek; Tiffany Sharma; Richard D. Minshall; Asrar B. Malik; Chinnaswamy Tiruppathi

Caveolin-1 (Cav-1) regulates agonist-induced Ca(2+) entry in endothelial cells; however, how Cav-1 regulates this process is poorly understood. Here, we describe that Cav-1 scaffold domain (NH(2)-terminal residues 82-101; CSD) interacts with transient receptor potential canonical channel 1 (TRPC1) and inositol 1,4,5-trisphosphate receptor 3 (IP(3)R3) to regulate Ca(2+) entry. We have shown previously that the TRPC1 COOH-terminal residues 781-789 bind to CSD. In the present study, we show that the TRPC1 COOH-terminal residues 781-789 truncated (TRPC1-CDelta781-789) mutant expression abolished Ca(2+) store release-induced Ca(2+) influx in human dermal microvascular endothelial cell line (HMEC) and human embryonic kidney (HEK-293) cells. To understand the basis of loss of Ca(2+) influx, we determined TRPC1 binding to IP(3)R3. We observed that the wild-type (WT)-TRPC1 but not TRPC1-CDelta781-789 effectively interacted with IP(3)R3. Similarly, WT-TRPC1 interacted with Cav-1, whereas TRPC1-CDelta781-789 binding to Cav-1 was markedly suppressed. We also assessed the direct binding of Cav-1 with TRPC1 and observed that the WT-Cav-1 but not the Cav-1DeltaCSD effectively interacted with TRPC1. Since the interaction between TRPC1 and Cav-1DeltaCSD was reduced, we measured Ca(2+) store release-induced Ca(2+) influx in Cav-1DeltaCSD-transfected cells. Surprisingly, Cav-1DeltaCSD expression showed a gain-of-function in Ca(2+) entry in HMEC and HEK-293 cells. We observed a similar gain-of-function in Ca(2+) entry when Cav-1DeltaCSD was expressed in lung endothelial cells of Cav-1 knockout mice. Immunoprecipitation results revealed that WT-Cav-1 but not Cav-1DeltaCSD interacted with IP(3)R3. Furthermore, we observed using confocal imaging the colocalization of IP(3)R3 with WT-Cav-1 but not with Cav-1DeltaCSD on Ca(2+) store release in endothelial cells. These findings suggest that CSD interacts with TRPC1 and IP(3)R3 and thereby regulates Ca(2+) store release-induced Ca(2+) entry in endothelial cells.


Molecular Pharmacology | 2012

The Ca2+ Sensor Stromal Interaction Molecule 1 (STIM1) Is Necessary and Sufficient for the Store-Operated Ca2+ Entry Function of Transient Receptor Potential Canonical (TRPC) 1 and 4 Channels in Endothelial Cells

Premanand Sundivakkam; Marc Freichel; Vandana Singh; Joseph P. Yuan; Stephen M. Vogel; Veit Flockerzi; Asrar B. Malik; Chinnaswamy Tiruppathi

We addressed the requirement for stromal interaction molecule 1 (STIM1), the endoplasmic reticulum (ER) Ca2+-sensor, and Orai1, a Ca2+ selective channel, in regulating Ca2+ entry through the store-operated channels mouse transient receptor potential canonical (TRPC) 4 or human TRPC1. Studies were made using murine and human lung endothelial cells (ECs) challenged with thrombin known to induce Ca2+ entry via TRPC1/4. Deletion or knockdown of TRPC4 abolished Ca2+ entry secondary to depletion of ER Ca2+ stores, preventing the disruption of the endothelial barrier. Knockdown of STIM1 (but not of Orai1or Orai3) or expression of the dominant-negative STIM1K684E-K685E mutant in ECs also suppressed Ca2+ entry secondary to store depletion. Ectopic expression of WT-STIM1 or WT-Orai1 in TRPC4(−/−)-ECs failed to rescue Ca2+ entry; however, WT-TRPC4 expression in TRPC4(−/−)-ECs restored Ca2+ entry indicating the requirement for TRPC4 in mediating store-operated Ca2+ entry. Moreover, expression of the dominant-negative Orai1R91W mutant or Orai3E81W mutant in WT-ECs failed to prevent thrombin-induced Ca2+ entry. In contrast, expression of the dominant-negative TRPC4EE647-648KK mutant in WT-ECs markedly reduced thrombin-induced Ca2+ entry. In ECs expressing YFP-STIM1, ER-store Ca2+ depletion induced formation of fluorescent membrane puncta in WT but not in TRPC4(−/−) cells, indicating that mobilization of STIM1 and engagement of its Ca2+ sensing function required TRPC4 expression. Coimmunoprecipitation studies showed coupling of TRPC1 and TRPC4 with STIM1 on depletion of ER Ca2+ stores. Thus, TRPC1 and TRPC4 can interact with STIM1 to form functional store-operated Ca2+-entry channels, which are essential for mediating Ca2+ entry-dependent disruption of the endothelial barrier.


Journal of Biological Chemistry | 2012

Targeted gene inactivation of calpain-1 suppresses cortical degeneration due to traumatic brain injury and neuronal apoptosis induced by oxidative stress.

Kaori H. Yamada; Dorothy A. Kozlowski; Stacey E. Seidl; Steven Lance; Adam J. Wieschhaus; Premanand Sundivakkam; Chinnaswamy Tiruppathi; Imran Chishti; Ira M. Herman; Shafi M. Kuchay; Athar H. Chishti

Background: Calpains play an important role in the regulation of cell death. Results: Calpain-1 inhibition decreases cortical neurodegeneration following TBI by regulating calcium influx and apoptosis of neurons under oxidative stress. Conclusion: Genetic inhibition of calpain-1 reduces neurodegeneration and suppresses neuronal apoptosis. Significance: Targeted inhibition of calpain-1 offers a promising therapeutic approach against TBI and other neurodegenerative diseases. Calpains are calcium-regulated cysteine proteases that have been implicated in the regulation of cell death pathways. Here, we used our calpain-1 null mouse model to evaluate the function of calpain-1 in neural degeneration following a rodent model of traumatic brain injury. In vivo, calpain-1 null mice show significantly less neural degeneration and apoptosis and a smaller contusion 3 days post-injury than wild type littermates. Protection from traumatic brain injury corroborated with the resistance of calpain-1 neurons to apoptosis induced by oxidative stress. Biochemical analysis revealed that caspase-3 activation, extracellular calcium entry, mitochondrial membrane permeability, and release of apoptosis-inducing factor from mitochondria are partially blocked in the calpain-1 null neurons. These findings suggest that the calpain-1 knock-out mice may serve as a useful model system for neuronal protection and apoptosis in traumatic brain injury and other neurodegenerative disorders in which oxidative stress plays a role.


Journal of Biological Chemistry | 2010

Calcium-mediated Stress Kinase Activation by DMP1 Promotes Osteoblast Differentiation

Asha Sarah Eapen; Premanand Sundivakkam; Yiqiang Song; Sriram Ravindran; Chinnaswammy Tiruppathi; Anne George

Calcium signaling and calcium transport play a key role during osteoblast differentiation and bone formation. Here, we demonstrate that DMP1 mediated calcium signaling, and its downstream effectors play an essential role in the differentiation of preosteoblasts to fully functional osteoblasts. DMP1, a key regulatory bone matrix protein, can be endocytosed by preosteoblasts, triggering a rise in cytosolic levels of calcium that initiates a series of downstream events leading to cellular stress. These events include release of store-operated calcium that facilitates the activation of stress-induced p38 MAPK leading to osteoblast differentiation. However, chelation of intracellular calcium and inhibition of the p38 signaling pathway by specific pharmacological inhibitors and dominant negative plasmid suppressed this activation. Interestingly, activated p38 MAPK can translocate to the nucleus to phosphorylate transcription factors that coordinate the expression of downstream target genes such as Runx 2, a key modulator of osteoblast differentiation. These studies suggest a novel paradigm by which DMP1-mediated release of intracellular calcium activates p38 MAPK signaling cascade to regulate gene expression and osteoblast differentiation.


Journal of Biological Chemistry | 2014

Cooperative signaling via transcription factors NF-κB and AP1/c-Fos mediates endothelial cell STIM1 expression and hyperpermeability in response to endotoxin.

Auditi DebRoy; Stephen M. Vogel; Dheeraj Soni; Premanand Sundivakkam; Asrar B. Malik; Chinnaswamy Tiruppathi

Background: STIM1 activates store-operated Ca2+ entry (SOCE). The transcriptional regulation of STIM1 during sepsis is not known. Results: STIM1 expression occurs downstream of TLR4 via activation of NF-κB and p38α-mediated c-Fos expression in endothelial cells. Conclusion: Cooperative signaling of NF-κB and p38 MAPK downstream of TLR4 is essential for STIM1 expression during sepsis. Significance: Selective p38α inhibitors may represent a potential therapeutic strategy to prevent sepsis-mediated lung vascular leaks. Stromal interacting molecule 1 (STIM1) regulates store-operated Ca2+ entry (SOCE). Here we show that STIM1 expression in endothelial cells (ECs) is increased during sepsis and, therefore, contributes to hyperpermeability. LPS induced STIM1 mRNA and protein expression in human and mouse lung ECs. The induced STIM1 expression was associated with augmented SOCE as well as a permeability increase in both in vitro and in vivo models. Because activation of both the NF-κB and p38 MAPK signaling pathways downstream of TLR4 amplifies vascular inflammation, we studied the influence of these two pathways on LPS-induced STIM1 expression. Inhibition of either NF-κB or p38 MAPK activation by pharmacological agents prevented LPS-induced STIM1 expression. Silencing of the NF-κB proteins (p65/RelA or p50/NF-κB1) or the p38 MAPK isoform p38α prevented LPS-induced STIM1 expression and increased SOCE in ECs. In support of these findings, we found NF-κB and AP1 binding sites in the 5′-regulatory region of human and mouse STIM1 genes. Further, we demonstrated that LPS induced time-dependent binding of the transcription factors NF-κB (p65/RelA) and AP1 (c-Fos/c-Jun) to the STIM1 promoter. Interestingly, silencing of c-Fos, but not c-Jun, markedly reduced LPS-induced STIM1 expression in ECs. We also observed that silencing of p38α prevented c-Fos expression in response to LPS in ECs, suggesting that p38α signaling mediates the expression of c-Fos. These results support the proposal that cooperative signaling of both NF-κB and AP1 (via p38α) amplifies STIM1 expression in ECs and, thereby, contributes to the lung vascular hyperpermeability response during sepsis.


PLOS ONE | 2014

Chronic Inflammation and Angiogenic Signaling Axis Impairs Differentiation of Dental-Pulp Stem Cells

Michael Boyle; Crystal Chun; Chelsee Strojny; Raghuvaran Narayanan; Amelia Bartholomew; Premanand Sundivakkam; Satish Alapati

Dental-pulp tissue is often exposed to inflammatory injury. Sequested growth factors or angiogenic signaling proteins that are released following inflammatory injury play a pivotal role in the formation of reparative dentin. While limited or moderate angiogenesis may be helpful for dental pulp maintenance, the induction of significant level of angiogenesis is probably highly detrimental. Hitherto, several studies have addressed the effects of proinflammatory stimuli on the survival and differentiation of dental-pulp stem cells (DPSC), in vitro. However, the mechanisms communal to the inflammatory and angiogenic signaling involved in DPSC survival and differentiation remain unknown. Our studies observed that short-term exposure to TNF-α (6 and 12 hours [hrs]) induced apoptosis with an upregulation of VEGF expression and NF-κB signaling. However, long-term (chronic) exposure (14 days) to TNF-α resulted in an increased proliferation with a concomitant shortening of the telomere length. Interestingly, DPSC pretreated with Nemo binding domain (NBD) peptide (a cell permeable NF-κB inhibitor) significantly ameliorated TNF-α- and/or VEGF-induced proliferation and the shortening of telomere length. NBD peptide pretreatment significantly improved TNF-α-induced downregulation of proteins essential for differentiation, such as bone morphogenic proteins (BMP)-1 & 2, BMP receptor isoforms-1&2, trasnforming growth factor (TGF), osteoactivin and osteocalcin. Additionally, inhibition of NF-κB signaling markedly increased the mineralization potential, a process abrogated by chronic exposure to TNF-α. Thus, our studies demonstrated that chronic inflammation mediates telomere shortening via NF-κB signaling in human DPSC. Resultant chromosomal instability leads to an emergence of increased proliferation of DPSC, while negatively regulating the differentiation of DPSC, in vitro.


Journal of Biological Chemistry | 2013

Store-operated Ca2+ Entry (SOCE) Induced by Protease-activated Receptor-1 Mediates STIM1 Protein Phosphorylation to Inhibit SOCE in Endothelial Cells through AMP-activated Protein Kinase and p38β Mitogen-activated Protein Kinase

Premanand Sundivakkam; Viswanathan Natarajan; Asrar B. Malik; Chinnaswamy Tiruppathi

Background: STIM1 is essential for store-operated Ca2+ entry (SOCE) in endothelial cells. Results: SOCE-activated AMPKα1-p38β signaling phosphorylates STIM1, which in turn inhibits SOCE in endothelial cells. Conclusion: SOCE-activated signaling pathway completes a negative feedback loop to regulate SOCE in endothelial cells. Significance: Selective p38β agonists may represent potential therapeutic agents to reverse the vascular leak syndrome. The Ca2+ sensor STIM1 is crucial for activation of store-operated Ca2+ entry (SOCE) through transient receptor potential canonical and Orai channels. STIM1 phosphorylation serves as an “off switch” for SOCE. However, the signaling pathway for STIM1 phosphorylation is unknown. Here, we show that SOCE activates AMP-activated protein kinase (AMPK); its effector p38β mitogen-activated protein kinase (p38β MAPK) phosphorylates STIM1, thus inhibiting SOCE in human lung microvascular endothelial cells. Activation of AMPK using 5-aminoimidazole-4-carboxamide-1-β-d-ribofuranoside (AICAR) resulted in STIM1 phosphorylation on serine residues and prevented protease-activated receptor-1 (PAR-1)-induced Ca2+ entry. Furthermore, AICAR pretreatment blocked PAR-1-induced increase in the permeability of mouse lung microvessels. Activation of SOCE with thrombin caused phosphorylation of isoform α1 but not α2 of the AMPK catalytic subunit. Moreover, knockdown of AMPKα1 augmented SOCE induced by thrombin. Interestingly, SB203580, a selective inhibitor of p38 MAPK, blocked STIM1 phosphorylation and led to sustained STIM1-puncta formation and Ca2+ entry. Of the three p38 MAPK isoforms expressed in endothelial cells, p38β knockdown prevented PAR-1-mediated STIM1 phosphorylation and potentiated SOCE. In addition, inhibition of the SOCE downstream target CaM kinase kinase β (CaMKKβ) or knockdown of AMPKα1 suppressed PAR-1-mediated phosphorylation of p38β and hence STIM1. Thus, our findings demonstrate that SOCE activates CaMKKβ-AMPKα1-p38β MAPK signaling to phosphorylate STIM1, thereby suppressing endothelial SOCE and permeability responses.


American Journal of Physiology-cell Physiology | 2010

Ca2+ influx via TRPC channels induces NF-κB-dependent A20 expression to prevent thrombin-induced apoptosis in endothelial cells

Prabhakar B. Thippegowda; Vandana Singh; Premanand Sundivakkam; Jiaping Xue; Asrar B. Malik; Chinnaswamy Tiruppathi

NF-kappaB signaling is known to induce the expression of antiapoptotic and proinflammatory genes in endothelial cells (ECs). We have shown recently that Ca(2+) influx through canonical transient receptor potential (TRPC) channels activates NF-kappaB in ECs. Here we show that Ca(2+) influx signal prevents thrombin-induced apoptosis by inducing NF-kappaB-dependent A20 expression in ECs. Knockdown of TRPC1 expressed in human umbilical vein ECs with small interfering RNA (siRNA) suppressed thrombin-induced Ca(2+) influx and NF-kappaB activation in ECs. Interestingly, we observed that thrombin induced >25% of cell death (apoptosis) in TRPC1-knockdown ECs whereas thrombin had no effect on control or control siRNA-transfected ECs. To understand the basis of EC survival, we performed gene microarray analysis using ECs. Thrombin stimulation increased only a set of NF-kappaB-regulated genes 3- to 14-fold over basal levels in ECs. Expression of the antiapoptotic gene A20 was the highest among these upregulated genes. Like TRPC1 knockdown, thrombin induced apoptosis in A20-knockdown ECs. To address the importance of Ca(2+) influx signal, we measured thrombin-induced A20 expression in control and TRPC1-knockdown ECs. Thrombin-induced p65/RelA binding to A20 promoter-specific NF-kappaB sequence and A20 protein expression were suppressed in TRPC1-knockdown ECs compared with control ECs. Furthermore, in TRPC1-knockdown ECs, thrombin induced the expression of proapoptotic proteins caspase-3 and BAX. Importantly, thrombin-induced apoptosis in TRPC1-knockdown ECs was prevented by adenovirus-mediated expression of A20. These results suggest that Ca(2+) influx via TRPC channels plays a critical role in the mechanism of cell survival signaling through A20 expression in ECs.


Journal of Signal Transduction | 2012

Pathogenic Role of Store-Operated and Receptor-Operated Channels in Pulmonary Arterial Hypertension

Ruby A. Fernandez; Premanand Sundivakkam; Kimberly A. Smith; Amy Zeifman; Abigail R. Drennan; Jason X.-J. Yuan

Pulmonary circulation is an important circulatory system in which the body brings in oxygen. Pulmonary arterial hypertension (PAH) is a progressive and fatal disease that predominantly affects women. Sustained pulmonary vasoconstriction, excessive pulmonary vascular remodeling, in situ thrombosis, and increased pulmonary vascular stiffness are the major causes for the elevated pulmonary vascular resistance (PVR) in patients with PAH. The elevated PVR causes an increase in afterload in the right ventricle, leading to right ventricular hypertrophy, right heart failure, and eventually death. Understanding the pathogenic mechanisms of PAH is important for developing more effective therapeutic approach for the disease. An increase in cytosolic free Ca2+ concentration ([Ca2+]cyt) in pulmonary arterial smooth muscle cells (PASMC) is a major trigger for pulmonary vasoconstriction and an important stimulus for PASMC migration and proliferation which lead to pulmonary vascular wall thickening and remodeling. It is thus pertinent to define the pathogenic role of Ca2+ signaling in pulmonary vasoconstriction and PASMC proliferation to develop new therapies for PAH. [Ca2+]cyt in PASMC is increased by Ca2+ influx through Ca2+ channels in the plasma membrane and by Ca2+ release or mobilization from the intracellular stores, such as sarcoplasmic reticulum (SR) or endoplasmic reticulum (ER). There are two Ca2+ entry pathways, voltage-dependent Ca2+ influx through voltage-dependent Ca2+ channels (VDCC) and voltage-independent Ca2+ influx through store-operated Ca2+ channels (SOC) and receptor-operated Ca2+ channels (ROC). This paper will focus on the potential role of VDCC, SOC, and ROC in the development and progression of sustained pulmonary vasoconstriction and excessive pulmonary vascular remodeling in PAH.


American Journal of Physiology-cell Physiology | 2013

Functional characterization of voltage-dependent Ca2+ channels in mouse pulmonary arterial smooth muscle cells: divergent effect of ROS

Eun A. Ko; Jun Wan; Aya Yamamura; Adriana M. Zimnicka; Hisao Yamamura; Hae Young Yoo; Haiyang Tang; Kimberly A. Smith; Premanand Sundivakkam; Amy Zeifman; Ramon J. Ayon; Ayako Makino; Jason X.-J. Yuan

Electromechanical coupling via membrane depolarization-mediated activation of voltage-dependent Ca(2+) channels (VDCC) is an important mechanism in regulating pulmonary vascular tone, while mouse is an animal model often used to study pathogenic mechanisms of pulmonary vascular disease. The function of VDCC in mouse pulmonary artery (PA) smooth muscle cells (PASMC), however, has not been characterized, and their functional role in reactive oxygen species (ROS)-mediated regulation of vascular function remains unclear. In this study, we characterized the electrophysiological and pharmacological properties of VDCC in PASMC and the divergent effects of ROS produced by xanthine oxidase (XO) and hypoxanthine (HX) on VDCC in PA and mesenteric artery (MA). Our data show that removal of extracellular Ca(2+) or application of nifedipine, a dihydropyridine VDCC blocker, both significantly inhibited 80 mM K(+)-mediated PA contraction. In freshly dissociated PASMC, the maximum inward Ca(2+) currents were -2.6 ± 0.2 pA/pF at +10 mV (with a holding potential of -70 mV). Window currents were between -40 and +10 mV with a peak at -15.4 mV. Nifedipine inhibited currents with an IC(50) of 0.023 μM, and 1 μM Bay K8644, a dihydropyridine VDCC agonist, increased the inward currents by 61%. XO/HX attenuated 60 mM K(+)-mediated increase in cytosolic free Ca(2+) concentration ([Ca(2+)](cyt)) due to Ca(2+) influx through VDCC in PASMC. Exposure to XO/HX caused relaxation in PA preconstricted by 80 mM K(+) but not in aorta and MA. In contrast, H(2)O(2) inhibited high K(+)-mediated increase in [Ca(2+)](cyt) and caused relaxation in both PA and MA. Indeed, RT-PCR and Western blot analysis revealed significantly lower expression of Ca(V)1.3 in MA compared with PA. Thus our study characterized the properties of VDCC and demonstrates that ROS differentially regulate vascular contraction by regulating VDCC in PA and systemic arteries.

Collaboration


Dive into the Premanand Sundivakkam's collaboration.

Top Co-Authors

Avatar

Chinnaswamy Tiruppathi

University of Illinois at Chicago

View shared research outputs
Top Co-Authors

Avatar

Asrar B. Malik

University of Illinois at Chicago

View shared research outputs
Top Co-Authors

Avatar

Anne George

University of Illinois at Chicago

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Stephen M. Vogel

University of Illinois at Chicago

View shared research outputs
Top Co-Authors

Avatar

Asha Sarah Eapen

University of Illinois at Chicago

View shared research outputs
Top Co-Authors

Avatar

Chinnaswammy Tiruppathi

University of Illinois at Chicago

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Kimberly A. Smith

University of Illinois at Chicago

View shared research outputs
Top Co-Authors

Avatar

Amelia Bartholomew

University of Illinois at Chicago

View shared research outputs
Researchain Logo
Decentralizing Knowledge