Přemysl Kolorenč
Charles University in Prague
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Přemysl Kolorenč.
Nature | 2014
Kirill Gokhberg; Přemysl Kolorenč; Alexander I. Kuleff; Lorenz S. Cederbaum
Irradiation of matter with light tends to electronically excite atoms and molecules, with subsequent relaxation processes determining where the photon energy is ultimately deposited and electrons and ions produced. In weakly bound systems, intermolecular Coulombic decay (ICD) enables very efficient relaxation of electronic excitation through transfer of the excess energy to neighbouring atoms or molecules that then lose an electron and become ionized. Here we propose that the emission site and energy of the electrons released during this process can be controlled by coupling the ICD to a resonant core excitation. We illustrate this concept with ab initio many-body calculations on the argon–krypton model system, where resonant photoabsorption produces an initial or ‘parent’ excitation of the argon atom, which then triggers a resonant-Auger-ICD cascade that ends with the emission of a slow electron from the krypton atom. Our calculations show that the energy of the emitted electrons depends sensitively on the initial excited state of the argon atom. The incident energy can thus be adjusted both to produce the initial excitation in a chosen atom and to realize an excitation that will result in the emission of ICD electrons with desired energies. These properties of the decay cascade might have consequences for fundamental and applied radiation biology and could be of interest in the development of new spectroscopic techniques.Low-energy electrons (LEEs) are known to be effective in causing strand breaks in DNA. Recent experiments show that an important direct source of LEEs is the intermolecular Coulombic decay (ICD) process. Here we propose a new cascade mechanism initiated by core excitation and terminated by ICD and demonstrate its properties. Explicit calculations show that the energies of the emitted ICD-electrons can be controlled by selecting the initial atomic excitation. The properties of the cascade may have interesting applications in the fields of electron spectroscopy and radiation damage. Initiating such a cascade by resonant X-ray absorption from a high-Z element embedded in a cancerous cell nucleus, ICD will deliver genotoxic particles locally at the absorption site, increasing in that way the controllability of the induced damage. When embedded in a medium, electronically excited atoms and molecules efficiently decay radiationlessly by transferring their excess energy to the neighboring species in the environment and ionizing them, creating in that way low-energy electrons (LEEs) and radical cations. This process is known as intermolecular Coulombic decay (ICD) [1]. Since its discovery in 1997 [1], the ICD has been successfully investigated in a variety of systems [2]. It usually proceeds on a femtosecond timescale and becomes faster the more neighbors are present, dominating most of the competing relaxation processes. Experimental investigation of ICD in water dimers [3] found the rate of this process to be so large as to completely suppress the proton transfer in the inner-valence ionized water molecules. As a result of ICD, two intact water cations are produced by the consecutive Coulomb
Journal of Chemical Physics | 2008
Přemysl Kolorenč; Vitali Averbukh; Kirill Gokhberg; Lorenz S. Cederbaum
Recently, a computational technique for ab initio calculation of the interatomic and intermolecular nonradiative decay processes has been developed [V. Averbukh and L. S. Cederbaum, J. Chem. Phys. 123, 204107 (2005)]. It combines the Fano formalism with the Greens function method known as the algebraic diagrammatic construction. The problem of normalization of continuum wave functions stemming from the use of the Gaussian basis sets is solved by using the Stieltjes imaging technique. In the present paper, the methodology is extended in order to describe the interatomic decay of excited doubly ionized states of clusters. The new computational scheme is applied to compute the interatomic decay rates of doubly ionized states formed by Auger relaxation of core vacancies in NeAr and MgNe van der Waals clusters.
Journal of Chemical Physics | 2014
Tsveta Miteva; Y.-C. Chiang; Přemysl Kolorenč; Alexander I. Kuleff; Kirill Gokhberg; Lorenz S. Cederbaum
A scheme utilizing excitation of core electrons followed by the resonant-Auger - interatomic Coulombic decay (RA-ICD) cascade was recently proposed as a means of controlling the generation site and energies of slow ICD electrons. This control mechanism was verified in a series of experiments in rare gas dimers. In this article, we present fully ab initio computed ICD electron and kinetic energy release spectra produced following 2p(3/2) → 4s, 2p(1/2) → 4s, and 2p(3/2) → 3d core excitations of Ar in Ar2. We demonstrate that the manifold of ICD states populated in the resonant Auger process comprises two groups. One consists of lower energy ionization satellites characterized by fast interatomic decay, while the other consists of slow decaying higher energy ionization satellites. We show that accurate description of nuclear dynamics in the latter ICD states is crucial for obtaining theoretical electron and kinetic energy release spectra in good agreement with the experiment.
Journal of Chemical Physics | 2009
Ph. V. Demekhin; Y.-C. Chiang; Spas D. Stoychev; Přemysl Kolorenč; Simona Scheit; Alexander I. Kuleff; Francesco Tarantelli; Lorenz S. Cederbaum
We analyze in detail the accessible relaxation pathways via electron emission of the Ne2+Ar states populated via the K-LL Auger decay of Ne+(1s−1)Ar. In particular, we concentrate on the “direct” interatomic Coulombic decay (ICD) of the Ne2+(2s−12p−1)Ar weakly bound doubly ionized states into the manifold of the Ne2+(2p−2)–Ar+(3p−1) repulsive triply ionized ones. To carry out the present study the potential energy curves of the NeAr ground state, the core ionized state Ne+(1s−1)Ar, the relevant dicationic and tricationic states, and the corresponding ICD transition rates have been computed using accurate ab initio methods and basis sets. The total and partial ICD electron spectra are computed within the framework of the time-dependent theory of wave packet propagation. Thereby, the impact of nuclear dynamics accompanying the electronic decay on the computed ICD-electron spectra is investigated in detail.
Journal of Chemical Physics | 2011
Přemysl Kolorenč; Vitali Averbukh
We consider 1s Auger decay in doubly (core-core and core-valence) ionized Ne and in the isoelectronic first row element hydrides. We show theoretically that the presence of the spectator inner valence vacancy leads to Auger lifetime variation of up to about a factor of 2, relative to the Auger lifetimes in the singly ionized species. The origin of this effect is traced to spin selection rules. Implications on the modelling of the radiation damage in strong x-ray fields are discussed.
Journal of Chemical Physics | 2015
Přemysl Kolorenč; Nicolas Sisourat
We report on an extensive study of interatomic Coulombic decay (ICD) widths in helium trimer computed using a fully ab initio method based on the Fano theory of resonances. Algebraic diagrammatic construction for one-particle Greens function is utilized for the solution of the many-electron problem. An advanced and universal approach to partitioning of the configuration space into discrete states and continuum subspaces is described and employed. Total decay widths are presented for all ICD-active states of the trimer characterized by one-site ionization and additional excitation of an electron into the second shell. Selected partial decay widths are analyzed in detail, showing how three-body effects can qualitatively change the character of certain relaxation transitions. Previously unreported type of three-electron decay processes is identified in one class of the metastable states.
Journal of Chemical Physics | 2015
Elke Fasshauer; Přemysl Kolorenč; Markus Pernpointner
Electronic decay processes of ionized systems are, for example, the Auger decay or the Interatomic/ Intermolecular Coulombic Decay. In both processes, an energetically low lying vacancy is filled by an electron of an energetically higher lying orbital and a secondary electron is instantaneously emitted to the continuum. Whether or not such a process occurs depends both on the energetic accessibility and the corresponding lifetime compared to the lifetime of competing decay mechanisms. We present a realization of the non-relativistically established FanoADC-Stieltjes method for the description of autoionization decay widths including relativistic effects. This procedure, being based on the Algebraic Diagrammatic Construction (ADC), was adapted to the relativistic framework and implemented into the relativistic quantum chemistry program package Dirac. It is, in contrast to other existing relativistic atomic codes, not limited to the description of autoionization lifetimes in spherically symmetric systems, but is instead also applicable to molecules and clusters. We employ this method to the Auger processes following the Kr3d(-1), Xe4d(-1), and Rn5d(-1) ionization. Based on the results, we show a pronounced influence of mainly scalar-relativistic effects on the decay widths of autoionization processes.
Journal of Physics B | 2015
Alvaro Sanchez-Gonzalez; T. R. Barillot; R. J. Squibb; Přemysl Kolorenč; Marcus Agåker; Vitali Averbukh; Michael J. Bearpark; Christoph Bostedt; J. D. Bozek; S. Bruce; S. Carron Montero; Ryan Coffee; Bridgette Cooper; James Cryan; Minjie Dong; John H. D. Eland; Li Fang; H. Fukuzawa; Markus Guehr; M. Ilchen; A. S. Johnsson; C. Liekhus-S; Agostino Marinelli; Timothy Maxwell; K. Motomura; Melanie Mucke; Adi Natan; T. Osipov; Christofer Östlin; Markus Pernpointner
We report the first measurement of the near oxygen K-edge auger spectrum of the glycine molecule. Our work employed an x-ray free electron laser as the photon source operated with input photon energies tunable between 527 and 547 eV. Complete electron spectra were recorded at each photon energy in the tuning range, revealing resonant and non-resonant auger structures. Finally ab initio theoretical predictions are compared with the measured above the edge auger spectrum and an assignment of auger decay channels is performed.
Archive | 2009
Vitali Averbukh; Přemysl Kolorenč; Kirill Gokhberg; Lorenz S. Cederbaum
Since their theoretical prediction in 1997, interatomic (intermolecular) Coulombic decay (ICD) and related processes have been in the focus of intensive theoretical and experimental research. The spectacular progress in this direction has been stimulated both by the fundamental importance of the discovered electronic decay phenomena and by the exciting possibility of their practical application, for example, in spectroscopy of interfaces. Interatomic decay phenomena take place in inner-shell-ionized clusters due to electronic correlation between two or more cluster constituents. These processes lead to the decay of inner-shell vacancies by electron emission and often also to the disintegration of the resulting multiple ionized cluster. The primary objective of the theory is, thus, to predict the kinetic energy spectra of the emitted electrons and of the cluster fragments. These spectra are determined by an interplay between the electronic decay process and the nucleardynamics. Key to the reliable prediction of the observable quantities is the knowledge of the time scale of the interatomic decay. Here we review the recent progress in the development of ab initio quantum chemical methods for the calculation of interatomic decay rates in excited, singly ionized, and doubly ionized systems as well as some of their applications, e.g.,~to rare gas systems and to endohedral fullerenes.
Faraday Discussions | 2014
Bridgette Cooper; Přemysl Kolorenč; L. J. Frasinski; Averbukh; Jonathan P. Marangos
Ultrafast hole dynamics created in molecular systems as a result of sudden ionisation is the focus of much attention in the field of attosecond science. Using the molecule glycine we show through ab initio simulations that the dynamics of a hole, arising from ionisation in the inner valence region, evolves with a timescale appropriate to be measured using X-ray pulses from the current generation of SASE free electron lasers. The examined pump-probe scheme uses X-rays with photon energy below the K edge of carbon (275-280 eV) that will ionise from the inner valence region. A second probe X-ray at the same energy can excite an electron from the core to fill the vacancy in the inner-valence region. The dynamics of the inner valence hole can be tracked by measuring the Auger electrons produced by the subsequent refilling of the core hole as a function of pump-probe delay. We consider the feasibility of the experiment and include numerical simulation to support this analysis. We discuss the potential for all X-ray pump-X-ray probe Auger spectroscopy measurements for tracking hole migration.