Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Prentiss H. Balcom is active.

Publication


Featured researches published by Prentiss H. Balcom.


Proceedings of the National Academy of Sciences of the United States of America | 2009

Over three millennia of mercury pollution in the Peruvian Andes

Colin A. Cooke; Prentiss H. Balcom; Harald Biester; Alexander P. Wolfe

We present unambiguous records of preindustrial atmospheric mercury (Hg) pollution, derived from lake-sediment cores collected near Huancavelica, Peru, the largest Hg deposit in the New World. Intensive Hg mining first began ca. 1400 BC, predating the emergence of complex Andean societies, and signifying that the region served as a locus for early Hg extraction. The earliest mining targeted cinnabar (HgS) for the production of vermillion. Pre-Colonial Hg burdens peak ca. 500 BC and ca. 1450 AD, corresponding to the heights of the Chavín and Inca states, respectively. During the Inca, Colonial, and industrial intervals, Hg pollution became regional, as evidenced by a third lake record ≈225 km distant from Huancavelica. Measurements of sediment-Hg speciation reveal that cinnabar dust was initially the dominant Hg species deposited, and significant increases in deposition were limited to the local environment. After conquest by the Inca (ca. 1450 AD), smelting was adopted at the mine and Hg pollution became more widely circulated, with the deposition of matrix-bound phases of Hg predominating over cinnabar dust. Our results demonstrate the existence of a major Hg mining industry at Huancavelica spanning the past 3,500 years, and place recent Hg enrichment in the Andes in a broader historical context.


Environmental Science & Technology | 2014

Atmospheric Hg Emissions from Preindustrial Gold and Silver Extraction in the Americas: A Reevaluation from Lake-Sediment Archives

Daniel R. Engstrom; William F. Fitzgerald; Colin A. Cooke; Carl H. Lamborg; Paul E. Drevnick; Edward B. Swain; Steven J. Balogh; Prentiss H. Balcom

Human activities over the last several centuries have transferred vast quantities of mercury (Hg) from deep geologic stores to actively cycling earth-surface reservoirs, increasing atmospheric Hg deposition worldwide. Understanding the magnitude and fate of these releases is critical to predicting how rates of atmospheric Hg deposition will respond to future emission reductions. The most recently compiled global inventories of integrated (all-time) anthropogenic Hg releases are dominated by atmospheric emissions from preindustrial gold/silver mining in the Americas. However, the geophysical evidence for such large early emissions is equivocal, because most reconstructions of past Hg-deposition have been based on lake-sediment records that cover only the industrial period (1850-present). Here we evaluate historical changes in atmospheric Hg deposition over the last millennium from a suite of lake-sediment cores collected from remote regions of the globe. Along with recent measurements of Hg in the deep ocean, these archives indicate that atmospheric Hg emissions from early mining were modest as compared to more recent industrial-era emissions. Although large quantities of Hg were used to extract New World gold and silver beginning in the 16th century, a reevaluation of historical metallurgical methods indicates that most of the Hg employed was not volatilized, but rather was immobilized in mining waste.


Environmental Science & Technology | 2013

Methylmercury Production in Estuarine Sediments: Role of Organic Matter

Amina T. Schartup; Robert P. Mason; Prentiss H. Balcom; T. A. Hollweg; Celia Y. Chen

Methylmercury (MeHg) affects wildlife and human health mainly through marine fish consumption. In marine systems, MeHg is formed from inorganic mercury (Hg(II)) species primarily in sediments, then accumulates and biomagnifies in the food web. Most of the fish consumed in the United States are from estuarine and marine systems, highlighting the importance of understanding MeHg formation in these productive regions. Sediment organic matter has been shown to limit mercury methylation in estuarine ecosystems, as a result it is often described as the primary control over MeHg production. In this paper, we explore the role of organic matter by looking at the effects of its changing sediment concentrations on the methylation rates across multiple estuaries. We measured sedimentary MeHg production at eleven estuarine sites that were selected for their contrasting biogeochemical characteristics, mercury (Hg) content, and location in the Northeastern U.S. (ME, NH, CT, NY, and NJ). Sedimentary total Hg concentrations ranged across 5 orders of magnitude, increasing in concentration from the pristine, sandy sediments of Wells (ME), to industrially contaminated areas such as Portsmouth (NH) and Hackensack (NJ). We find that methylation rates are the highest at locations with high Hg content (relative to carbon), and that organic matter does not hinder mercury methylation in estuaries.


PLOS ONE | 2014

Benthic and Pelagic Pathways of Methylmercury Bioaccumulation in Estuarine Food Webs of the Northeast United States

Celia Y. Chen; Mark E. Borsuk; Deenie M. Bugge; T. A. Hollweg; Prentiss H. Balcom; Darren M. Ward; Jason J. Williams; Robert P. Mason

Methylmercury (MeHg) is a contaminant of global concern that bioaccumulates and bioamagnifies in marine food webs. Lower trophic level fauna are important conduits of MeHg from sediment and water to estuarine and coastal fish harvested for human consumption. However, the sources and pathways of MeHg to these coastal fisheries are poorly known particularly the potential for transfer of MeHg from the sediment to biotic compartments. Across a broad gradient of human land impacts, we analyzed MeHg concentrations in food webs at ten estuarine sites in the Northeast US (from the Hackensack Meadowlands, NJ to the Gulf of Maine). MeHg concentrations in water column particulate material, but not in sediments, were predictive of MeHg concentrations in fish (killifish and Atlantic silversides). Moreover, MeHg concentrations were higher in pelagic fauna than in benthic-feeding fauna suggesting that MeHg delivery to the water column from methylation sites from within or outside of the estuary may be an important driver of MeHg bioaccumulation in estuarine pelagic food webs. In contrast, bulk sediment MeHg concentrations were only predictive of concentrations of MeHg in the infaunal worms. Our results across a broad gradient of sites demonstrate that the pathways of MeHg to lower trophic level estuarine organisms are distinctly different between benthic deposit feeders and forage fish. Thus, even in systems with contaminated sediments, transfer of MeHg into estuarine food webs maybe driven more by the efficiency of processes that determine MeHg input and bioavailability in the water column.


Environmental Science & Technology | 2015

Contrasting Effects of Marine and Terrestrially Derived Dissolved Organic Matter on Mercury Speciation and Bioavailability in Seawater

Amina T. Schartup; Udonna Ndu; Prentiss H. Balcom; Robert P. Mason; Elsie M. Sunderland

Methylmercury (MeHg) is the only species of mercury (Hg) to biomagnify in aquatic food-webs to levels that are a widespread concern for human and ecological health. Here we investigate the association between dissolved organic matter (DOM) in seawater and Hg speciation and uptake using experimental data and field measurements from Long Island Sound (LIS) and the Northwestern Atlantic continental margin. We measured differences in DOM composition across sampling stations using excitation emission matrix fluorescence spectroscopy and further separated DOM into terrestrial and marine components using Parallel Factor Analysis (PARAFAC). Highest MeHg concentrations were found in the estuarine stations (LIS) with highest DOM concentrations due to enhanced external inputs from the watershed and rivers. For stations on the shelf and slope, MeHg in plankton increased linearly with a decreasing fraction of fluorescence attributable to DOM components with a terrestrial rather than marine origin. These results are corroborated by experimental data showing higher MeHg uptake by cells in the presence of predominantly marine DOM compared to terrestrial DOM. Highest fractions of dissolved gaseous mercury were also found at stations with the highest marine DOM content, suggesting a greater reducible fraction of divalent inorganic Hg. These data suggest DOM composition is a critical driver of Hg reactivity and bioavailability in offshore marine waters.


Environmental Science & Technology | 2013

Drivers of Surface Ocean Mercury Concentrations and Air–Sea Exchange in the West Atlantic Ocean

Anne L. Soerensen; Robert P. Mason; Prentiss H. Balcom; Elsie M. Sunderland

Accurately characterizing net evasion of elemental mercury (Hg(0)) from marine systems is essential for understanding the global biogeochemical mercury (Hg) cycle and the pool of divalent Hg (Hg(II)) available for methylation. Few high resolution measurements of Hg(0) are presently available for constraining global and regional flux estimates and for understanding drivers of spatial and temporal variability in evasion. We simultaneously measured high-resolution atmospheric and surface seawater Hg(0) concentrations as well as the total Hg distribution during six cruises in the West Atlantic Ocean between 2008 and 2010 and examined environmental factors affecting net Hg(0) formation and evasion. We observed the lowest fraction of Hg as Hg(0) (7.8 ± 2.4%) in the near-coastal and shelf areas that are influenced by riverine inputs. Significantly higher %Hg(0) observed in open ocean areas (15.8 ± 3.9%) may reflect lower dissolved organic carbon (DOC) in offshore environments, which is known to affect both the reducible Hg(II) pool and redox kinetics. Calculated Hg(0) evasion changed by more than a factor of 3 between cruises (range: 2.1 ± 0.7 to 6.8 ± 5.1 ng m(-2) h(-1)), driven mainly by variability in Hg(0) and wind speed. Our results suggest that further mechanistic understanding of the role of DOC on Hg redox kinetics in different types of marine environments is needed to explain variability in Hg(0) concentrations and improve global estimates of air-sea exchange.


Environmental Science & Technology | 2014

Elemental mercury concentrations and fluxes in the tropical atmosphere and ocean.

Anne L. Soerensen; Robert P. Mason; Prentiss H. Balcom; Daniel J. Jacob; Yanxu Zhang; Joachim Kuss; Elynor M Sunderland

Air-sea exchange of elemental mercury (Hg(0)) is a critical component of the global biogeochemical Hg cycle. To better understand variability in atmospheric and oceanic Hg(0), we collected high-resolution measurements across large gradients in seawater temperature, salinity, and productivity in the Pacific Ocean (20°N-15°S). We modeled surface ocean Hg inputs and losses using an ocean general circulation model (MITgcm) and an atmospheric chemical transport model (GEOS-Chem). Observed surface seawater Hg(0) was much more variable than atmospheric concentrations. Peak seawater Hg(0) concentrations (∼ 130 fM) observed in the Pacific intertropical convergence zone (ITCZ) were ∼ 3-fold greater than surrounding areas (∼ 50 fM). This is similar to observations from the Atlantic Ocean. Peak evasion in the northern Pacific ITCZ was four times higher than surrounding regions and located at the intersection of high wind speeds and elevated seawater Hg(0). Modeling results show that high Hg inputs from enhanced precipitation in the ITCZ combined with the shallow ocean mixed layer in this region drive elevated seawater Hg(0) concentrations. Modeled seawater Hg(0) concentrations reproduce observed peaks in the ITCZ of both the Atlantic and Pacific Oceans but underestimate its magnitude, likely due to insufficient deep convective scavenging of oxidized Hg from the upper troposphere. Our results demonstrate the importance of scavenging of reactive mercury in the upper atmosphere driving variability in seawater Hg(0) and net Hg inputs to biologically productive regions of the tropical ocean.


AMBIO: A Journal of the Human Environment | 2011

Pre-Colombian Mercury Pollution Associated with the Smelting of Argentiferous Ores in the Bolivian Andes

Colin A. Cooke; Prentiss H. Balcom; Charles Kerfoot; Mark B. Abbott; Alexander P. Wolfe

The development of the mercury (Hg) amalgamation process in the mid-sixteenth century triggered the onset of large-scale Hg mining in both the Old and New Worlds. However, ancient Hg emissions associated with amalgamation and earlier mining efforts remain poorly constrained. Using a geochemical time-series generated from lake sediments near Cerro Rico de Potosí, once the world’s largest silver deposit, we demonstrate that pre-Colonial smelting of Andean silver ores generated substantial Hg emissions as early as the twelfth century. Peak sediment Hg concentrations and fluxes are associated with smelting and exceed background values by approximately 20-fold and 22-fold, respectively. The sediment inventory of this early Hg pollution more than doubles that associated with extensive amalgamation following Spanish control of the mine (1574–1900 AD). Global measurements of [Hg] from economic ores sampled world-wide indicate that the phenomenon of Hg enrichment in non-ferrous ores is widespread. The results presented here imply that indigenous smelting constitutes a previously unrecognized source of early Hg pollution, given naturally elevated [Hg] in economic silver deposits.


Environmental Science & Technology | 2014

Sediment-porewater partitioning, total sulfur, and methylmercury production in estuaries.

Amina T. Schartup; Prentiss H. Balcom; Robert P. Mason

Mercury (Hg) speciation and the activity of Hg(II)-methylating bacteria are responsible for the rate of methylmercury production and thus bioaccumulation in marine foodwebs. Factors affecting porewater partitioning (Kd) and methylation of Hg(II) were examined at 11 sites in sediment of 4 biogeochemically diverse estuaries in the Northeast U.S. In Long Island Sound, 88% of total mercury (HgT) log Kd variability was described by porewater dissolved organic carbon concentration and sediment total sulfur (S) content. Whereas across all estuaries, regression analyses showed that S alone drives about 70% of Kd variability and 50% of changes in methylation rates; and the inclusion of DOC and sulfides did not improve the prediction. Thus, we demonstrated that S is a better predictor of HgT log Kd than the sediment organic matter across multiple estuaries, and while organic matter and S are interchangeable in small-scale studies, on a larger scale, sediment S content is the simplest and most effective variable to measure.


Aquatic Geochemistry | 2016

Seasonal Cycling and Transport of Mercury and Methylmercury in the Turbidity Maximum of the Delaware Estuary

Kathleen J. Gosnell; Prentiss H. Balcom; Veronica Ortiz; Brian P. DiMento; Amina T. Schartup; Richard Greene; Robert P. Mason

The Delaware River Estuary (DRE) is a cornerstone of industrialization, shipping, and urban usage, and has a long history of human impact on pollution and recovery. Mercury (Hg) is a contaminant of concern in the DRE based upon concentrations in some fish samples that were found to exceed State and Federal fish tissue criteria. Methylation of Hg often follows a seasonal pattern as its production is biologically mediated. Surveys were conducted in November 2011, April 2012, and July 2012 to assess this effect. We sampled surface and bottom water at six sites spanning the estuarine turbidity maximum (ETM) in the main channel of the river, plus three sediment sites at shallow, subtidal locations. Our results indicate there is a clear seasonal increase in both water column and sediment methylmercury (MeHg) and %MeHg concentrations in the ETM during July. Water-column-filtered total mercury (HgT), suspended particle HgT, and MeHg concentrations were found to fluctuate little with location or season in the ETM. In contrast, sediment MeHg, water-column-filtered MeHg, and pore water HgT varied seasonally. Furthermore, pore water MeHg levels were elevated in concert with increased kmeth rates in July. Estimated river input and sediment and atmospheric depositional MeHg flux were compared seasonally. River flux was more than an order of magnitude higher than sediment flux in April, coinciding with higher fluvial transport. However, during July, river flux decreases and sediment flux becomes a larger relative source. This trend has potential implications for fish and other biota residing in the DRE during summer.

Collaboration


Dive into the Prentiss H. Balcom's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Carl H. Lamborg

Woods Hole Oceanographic Institution

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Robert P. Mason

University of Connecticut

View shared research outputs
Top Co-Authors

Avatar

Daniel R. Engstrom

Science Museum of Minnesota

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Chun-Mao Tseng

National Taiwan University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge