Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Prerana Jha is active.

Publication


Featured researches published by Prerana Jha.


BMC Genomics | 2014

Hypoxic signature of microRNAs in glioblastoma: insights from small RNA deep sequencing

Rahul Agrawal; Priyatama Pandey; Prerana Jha; Vivek Dwivedi; Chitra Sarkar; Ritu Kulshreshtha

BackgroundHypoxia is a critical aspect of the glioma microenvironment and has been associated with poor prognosis and resistance to various therapies. However, the mechanisms responsible for hypoxic survival of glioma cells remain unclear. Recent studies strongly suggest that microRNAs act as critical mediators of the hypoxic response. We thus hypothesized their prominent role in hypoxia resistance in glioblastoma (GBM) and aimed to identify those.ResultsWith this study, we present the first detailed analysis of small RNA transcriptome of cell line U87MG, a grade IV glioma cell line, and its alteration under hypoxic condition. Based on deep sequencing and microarray data, we identify a set of hypoxia regulated microRNAs, with the miR-210-3p and its isomiRs showing highest induction in GBM cell lines U87MG and U251MG. We show miR-210-3p, miR-1275, miR-376c-3p, miR-23b-3p, miR-193a-3p and miR-145-5p to be up-regulated, while miR-92b-3p, miR-20a-5p, miR-10b-5p, miR-181a-2-3p and miR-185-5p are down-regulated by hypoxia. Interestingly, certain hypoxia-induced miRNAs are also known to be over-expressed in GBM tumors, suggesting that hypoxia may be one of the factors involved in establishing the miRNA signature of GBM. Transcription factor binding sites for Hypoxia inducible factor 1 A (HIF1A) were identified in the promoter region (5 kb upstream) of 30 hypoxia-induced miRNAs. HIF-1A over-expression and silencing studies show regulation of specific miRNAs, including miR-210-3p, to be HIF1A dependent. On the other hand, miR-210-3p leads to an increase in transcriptional activity of HIF and its target genes vascular endothelial growth factor (VEGF) and carbonic anhydrase 9 (CA9). MiR-210-3p levels were found to be high in GBM patient samples and showed good correlation with the known hypoxia markers CA9 and VEGF. We show that miR-210-3p promotes hypoxic survival and chemoresistance in GBM cells and targets a negative regulator of hypoxic response, HIF3A. Additionally, a total of 139 novel miRNAs were discovered by the analysis of deep sequencing data and three of these were found to be differentially expressed under hypoxia.ConclusionsOverall, our study reveals a novel miRNA signature of hypoxia in GBM and suggests miR-210-3p to be an oncogenic player and a novel potential intrinsic marker of hypoxia in glioblastoma.


Neuro-oncology | 2013

Comparative study of IDH1 mutations in gliomas by immunohistochemistry and DNA sequencing

Shipra Agarwal; Mehar Chand Sharma; Prerana Jha; Pankaj Pathak; Vaishali Suri; Chitra Sarkar; Kunzang Chosdol; Ashish Suri; Shashank Sharad Kale; Ashok Kumar Mahapatra; Pankaj Jha

BACKGROUND Mutations involving isocitrate dehydrogenase 1 (IDH 1) occur in a high proportion of diffuse gliomas, with implications on diagnosis and prognosis. About 90% involve exon 4 at codon 132, replacing amino acid arginine with histidine (R132H). Rarer ones include R132C, R132S, R132G, R132L, R132V, and R132P. Most authors have used DNA-based methods to assess IDH1 status. Preliminary studies comparing imunohistochemistry (IHC) with IDH1-R132H mutation-specific antibodies have shown concordance with DNA sequencing and no cross-reactivity with wild-type IDH1 or other mutant proteins. The present study compares results of IHC with DNA sequencing in diffuse gliomas. MATERIALS AND METHODS Fifty diffuse gliomas with frozen tissue samples for DNA sequencing and adequate tissue in paraffin blocks for IHC using IDH1-R132H specific antibody were assessed for IDH1 mutations. RESULTS Concordance of findings between IHC and DNA sequencing was noted in 88% (44/50) cases. All 6 cases with discrepancy were immunopositive with DIA-H09 antibody. While in 3 of these 6 cases, DNA sequencing failed to reveal any mutations, R132L (arginine replaced by leucine) mutation was found in the rest 3 cases. Interestingly, of the immunopositive cases, 46.6% (14/30) showed immunostaining in only a fraction of tumor cells. CONCLUSIONS IHC is an easy and quick method of detecting IDH1-R132H mutations, but there may be some discrepancies between IHC and DNA sequencing. Although there were no false-negative cases, cross-reactivity with IDH1-R132L was seen in 3, a finding not reported thus far. Because of more universal availability of IHC over genetic testing, cross-reactivity and staining heterogeneity may have bearing over its use in detecting IDH1-R132H mutation in gliomas.


Biology Direct | 2013

Genome-wide analysis reveals downregulation of miR-379/miR-656 cluster in human cancers

Saurabh V. Laddha; Subhashree Nayak; Deepanjan Paul; Rajasekhara Reddy; Charu Sharma; Prerana Jha; Manoj Hariharan; Anurag Agrawal; Shantanu Chowdhury; Chitra Sarkar; Arijit Mukhopadhyay

BackgroundMicroRNAs (miRNAs) are non-uniformly distributed in genomes and ~30% of the miRNAs in the human genome are clustered. In this study we have focused on the imprinted miRNA cluster miR-379/miR-656 on 14q32.31 (hereafter C14) to test their coordinated function. We have analyzed expression profile of >1000 human miRNAs in >1400 samples representing seven different human tissue types obtained from cancer patients along with matched and unmatched controls.ResultsWe found 68% of the miRNAs in this cluster to be significantly downregulated in glioblastoma multiforme (GBM), 61% downregulated in kidney renal clear cell carcinoma (KIRC), 46% in breast invasive carcinoma (BRCA) and 14% in ovarian serous cystadenocarcinoma (OV). On a genome-wide scale C14 miRNAs accounted for 12-30% of the total downregulated miRNAs in different cancers. Pathway enrichment for the predicted targets of C14 miRNA was significant for cancer pathways, especially Glioma (p< 3.77x10-6, FDR<0.005). The observed downregulation was confirmed in GBM patients by real-time PCR, where 79% of C14 miRNAs (34/43) showed downregulation. In GBM samples, hypermethylation at C14 locus (p<0.003) and downregulation of MEF2, a crucial transcription factor for the cluster was observed which likely contribute to the observed downregulation of the entire miRNA cluster.ConclusionWe provide compelling evidence that the entire C14 miRNA cluster is a tumor suppressor locus involved in multiple cancers, especially in GBM, and points toward a general mechanism of coordinated function for clustered miRNAs.ReviewersReviewed by: Prof. Gregory J Goodall and Dr. Alexander Max Burroughs


Journal of Clinical Neuroscience | 2011

A clinicopathological and molecular analysis of glioblastoma multiforme with long-term survival.

Prasenjit Das; Tarun Puri; Prerana Jha; Pankaj Pathak; Nikhil Joshi; Vaishali Suri; Mehar Chand Sharma; Bhawani Shankar Sharma; A.K. Mahapatra; Ashish Suri; Chitra Sarkar

The median survival time of patients with glioblastoma multiforme (GBM) is 12 months, and only 3-5% of patients survive longer than 3 years. We performed histomorphological and detailed molecular analyses of seven long-term survivors of GBM to identify any prognostic factors that potentially contribute to survival. Morphology and immunohistochemistry for p53, phosphatase and tensin homologue (PTEN) and epidermal growth factor receptor (EGFR) protein expression were investigated. EGFR amplification and 1p/19q deletion were assessed by fluorescent in situ hybridization. The O6-methylguanine-DNA methyltransferase (MGMT) gene methylation status was evaluated by performing methylation-specific polymerase chain reaction assays. All tumors were classical GBMs and no significant oligodendroglial differentiation was noted. The majority showed EGFR amplification (4/7), PTEN protein expression (6/7) and MGMT promoter methylation (5/6). Immunopositivity for p53 was noted in three of seven patients. Deletion of chromosome 1p/19q, either isolated or combined, was not identified in any of the se patients. All patients were treated by gross total resection followed by radiotherapy; six patients received additional temozolomide treatment. A relatively young age of onset (48 years), with a high MGMT promoter methylation and PTEN protein expression were favorable factors for long-term survival. The presence of EGFR amplification indicates that more than a single factor determines survival in GBM.


Neurosurgery | 2010

O6-Methylguanine DNA Methyltransferase Gene Promoter Methylation Status in Gliomas and Its Correlation With Other Molecular Alterations: First Indian Report With Review of Challenges for Use in Customized Treatment

Prerana Jha; Vaishali Suri; Ayushi Jain; Mehar Chand Sharma; Pankaj Pathak; Pankaj Jha; Arti Srivastava; Ashish Suri; Deepak Gupta; Kunzang Chosdol; P. Chattopadhyay; Chitra Sarkar

BACKGROUND: O6-methylguanine methyltransferase (MGMT) promoter methylation in adult glioblastomas (glioblastoma multiforme) is considered a promising molecular alteration, predictive of better response to temozolomide therapy and longer overall survival. OBJECTIVE: To look at the frequency of MGMT methylation in glial tumors of all grades and types, and correlate this alteration with loss of heterozygosity 1p/19q, TP53 gene mutations, epidermal growth factor receptor (EGFR) amplification, and isocitrate dehydrogenase 1 (IDH1) mutations. METHODS: One hundred two gliomas of various grades and subtypes were assessed by methylation-specific polymerase chain reaction for MGMT promoter methylation status. The results were correlated with 1p/19q status, EGFR amplification, TP53, and IDH1 mutations. RESULTS: There was an inverse correlation of MGMT promoter methylation frequency with tumor grade, observed in 79.4%, 70.8%, and 56.8% of grade II, grade III, and grade IV gliomas, respectively. The difference was statistically significant in grade II vs IV tumors (P = .036). The majority of cases with 1p/19q loss of heterozygosity also showed MGMT methylation, although the association was not significant. There was no significant correlation of MGMT status with IDH1 mutation. In astrocytic tumors, there was no correlation of MGMT methylation with TP53 mutation or EGFR amplification. CONCLUSION: MGMT promoter methylation was observed in a considerable proportion of all grades and subtypes of gliomas, with no significant correlation with other known genetic alterations. On extensive literature review, in both low- and high-grade gliomas, wide variability of data on the frequency of MGMT methylation and its association with other molecular alterations from various centers was noted, mostly owing to technical causes. This raises questions regarding the capacity of this test for use as an objective and reproducible marker for customized treatment in individual cases.


Neuro-oncology | 2011

Molecular profile of oligodendrogliomas in young patients.

Vaishali Suri; Prerana Jha; Shipra Agarwal; Pankaj Pathak; Mehar Chand Sharma; Vikas Sharma; Sudhanshu Shukla; Kumaravel Somasundaram; Ashok Kumar Mahapatra; Shashank Sharad Kale; Chitra Sarkar

Several studies on molecular profiling of oligodendrogliomas (OGs) in adults have shown a distinctive genetic pattern characterized by combined deletions of chromosome arms 1p and 19q, O6-methylguanine-methyltransferase (MGMT) methylation, and isocitrate dehydrogenase 1 (IDH1) mutation, which have potential diagnostic, prognostic, and even therapeutic relevance. OGs in pediatric and young adult patients are rare and have been poorly characterized on a molecular and biological basis, and it remains uncertain whether markers with prognostic significance in adults also have predictive value in these patients. Fourteen cases of OGs in young patients (age, ≤ 25 years) who received a diagnosis over 7 years were selected (7 pediatric patients age ≤ 18 years and 7 young adults aged 19-25 years). The cases were evaluated for 1p/19q status, MGMT promoter methylation, p53 mutation, and IDH1 mutation. None of the pediatric cases showed 1p/19q deletion. In young adults, combined 1p/19q loss was observed in 57% and isolated 1p loss in 14% of cases. The majority of cases in both subgroups (71% in each) harbored MGMT gene promoter methylation. TP53 and IDH1 mutations were not seen in any of the cases in both the groups. To our knowledge, this is the first study to show that molecular profile of OGs in pediatric and young adult patients is distinct. Further large-scale studies are required to identify additional clinically relevant genetic alterations in this group of patients.


Diagnostic Molecular Pathology | 2011

Characterization of molecular genetic alterations in GBMs highlights a distinctive molecular profile in young adults.

Prerana Jha; Suri; Geetika Singh; Purkait S; Pankaj Pathak; Sharma; M. C. Sharma; Ashish Suri; Deepak Gupta; A.K. Mahapatra; Chitra Sarkar

To evaluate age-related differences in histopathologic and molecular profile of glioblastomas (GBMs) at various age groups, with special reference to TP53 mutation, epidermal growth factor receptor (EGFR) amplification, EGFR vIII mutant, PTEN deletion, and IDH1 mutation. Agewise GBM incidence was calculated over a period of 5 years (2005 to 2009). Seventy-five GBMs were selected for molecular analysis. Majority of cases were in the age group of 41 to 60 years, and mean age was 43.6 years. Histology of all 75 cases selected for molecular profiling was identical. Primary adult GBMs showed EGFR amplification and PTEN deletion in majority (37.3% and 54.9%, respectively). TP53 and IDH1 mutations were rare (11.8% cases each). In secondary GBMs, TP53 (66.7%) and IDH1 mutations (44.4%) were most frequent. PTEN deletion was seen in 33.3% and none had EGFR amplification. Pediatric GBMs (<18 y) harbored frequent TP53 mutations (46.7%) and PTEN deletion in 40%. IDH1 mutations and EGFR amplification were absent. The molecular profile of primary GBMs in young adults (19 to 40 y) was distinctly different from that of adults older than 40 years. TP53 mutation was present in 20% cases. The frequency of EGFR amplification (13.3%) and PTEN deletion (33.3%) was significantly low (P=0.028 and 0.046, respectively). IDH1 mutation, which is rare in primary adult GBMs, was present in 40% of cases. Molecular heterogeneity exists within GBMs of different age cohorts. The molecular profile of GBMs in young adults is distinctly different. Thus, there is a strong need for further studies in various age groups to provide guidelines for therapeutic targeting.


Childs Nervous System | 2010

MGMT gene promoter methylation in pediatric glioblastomas

Arti Srivastava; Ayushi Jain; Prerana Jha; Vaishali Suri; Mehar Chand Sharma; Supriya Mallick; Tarun Puri; Deepak Gupta; Aditya Gupta; Chitra Sarkar

PurposeRelatively few studies have been performed on molecular properties of pediatric glioblastoma multiforme (GBM). Methylation of DNA repair gene O6-methylguanine-DNA methyltransferase (MGMT) promoter region has been associated with favorable prognosis and prolonged survival in adult GBM patients treated with temozolomide (TMZ). We explored the frequency of MGMT gene promoter methylation in pediatric glioblastomas and compared it with the known molecular alterations in p53.MethodsTwenty pediatric GBM cases were selected. MGMT promoter methylation was assessed by methylation specific PCR. p53 expression was determined by immunohistochemistry.ResultsMGMT gene promoter methylation was observed in 50% of pediatric glioblastomas. p53 protein expression was detected in 60% of cases. Seventy percent of cases with methylated MGMT promoter were p53 immunopositive.ConclusionsThe frequency of MGMT gene promoter methylation in pediatric GBMs was similar to adult GBM patients. The pediatric GBMs should also be investigated for MGMT promoter methylation to identify a subset of patients likely to benefit from TMZ therapy. p53 protein overexpression was more common in pediatric primary GBMs. To the best of our knowledge this is only the second study on MGMT gene promoter methylation status in pediatric GBMs.


Experimental and Molecular Pathology | 2011

TP53 polymorphisms in gliomas from Indian patients: Study of codon 72 genotype, rs1642785, rs1800370 and 16 base pair insertion in intron-3.

Prerana Jha; Pankaj Jha; Pankaj Pathak; Kunzang Chosdol; Vaishali Suri; Mehar Chand Sharma; Guresh Kumar; Manmohan Singh; Ashok Kumar Mahapatra; Chitra Sarkar

Several single nucleotide polymorphisms of the TP53 gene have been reported, amongst which polymorphism in codon 72 (rs1042522) has received significant attention and shown to be associated with disease susceptibility in different cancer types. However, there are variable reports on this polymorphism in gliomas from worldwide with inconsistent results. In addition, the implications of other polymorphic loci are not much explored in gliomas. Hence, in the present study the TP53 sequence was analyzed for all polymorphism and mutations in a total of 84 gliomas of different types and grades from patients of Indian origin. The complete sequence of all coding exons (2 to 11) and introns 2, 3, 5 and 8 of TP53 gene were studied while for introns 1, 4, 6, 7, 9 and 10, only exon flanking regions could be studied. The polymorphic loci were compared with control population. In addition to the well known codon 72 polymorphism (rs1042522), three other polymorphisms rs1642785, rs1800370 and a 16 base pair insertion in intron-3 were found. At codon 72, our study showed higher Arg/Arg genotype in gliomas compared to normal population (38% versus 13%). The Arg allele frequency in glioma patients was comparatively higher than controls (0.55 versus 0.45; P=0.037). The Arg allele frequency was also high in adult glioblastomas compared to paediatric counterparts (0.55 versus 0.36). However, there was no significant association of TP53 mutations with any genotype of codon 72. At rs1642785, the G allele frequency was significantly higher in gliomas than in control population (0.55 versus 0.36, P=0.005). The genotype at a 16 base pair insertion in intron-3 was almost similar in case and control. However, the polymorphism at rs1800370 was exclusive to gliomas. This is the first report of TP53 gene polymorphism in glioma patients from India. Our study also delineates the frequency of four polymorphisms in gliomas for the first time. The codon 72 variant (rs1042522) and rs1642785 polymorphisms possibly poses risk to glioma development in Indian population. However, the functional significance of these polymorphism needs further elucidation.


Experimental and Molecular Pathology | 2011

IDH1 mutations in gliomas: first series from a tertiary care centre in India with comprehensive review of literature.

Prerana Jha; Vaishali Suri; Vikas Sharma; Geetika Singh; Mehar Chand Sharma; Pankaj Pathak; Kunzang Chosdol; Pankaj Jha; Ashish Suri; Ashok Kumar Mahapatra; Shashank Sharad Kale; Chitra Sarkar

OBJECT Mutations of the gene encoding isocitrate dehydrogenase (IDH) have been shown in a significant proportion of diffuse gliomas. These mutations are specific to gliomas and their utility for diagnosis and prognostication of these tumors is being proclaimed. The present study was conducted with the aim of assessing frequency of IDH1 mutations in gliomas, their correlation with other molecular alterations along with a comprehensive review of available literature. METHODS A total of 100 gliomas of various grades and subtypes from Indian patients were screened for assessing frequency of IDH1 mutations. The findings were correlated with TP53 mutations, 1p/19q deletion, EGFR amplification and PTEN deletion status. The detailed comprehensive review of literature was performed comparing all studies available till date. RESULTS IDH1 mutations in codon 132 were observed in 46% cases. The frequency was 68.8% in grade II, 85.7% in grade III and 12.8% in GBMs. R132H mutation was most frequent (84.8%). Overall frequency of these mutations was relatively higher in oligodendroglial tumours as compared to astrocytic phenotype (66.7% versus 38.4%; p=0.06). Primary GBMs showed IDH1 mutation in only 4.4% cases. In contrast, 66.7% of secondary GBMs harboured this alteration. Patients with IDH1 mutations were significantly younger as compared to those without mutation (p=0.001). There was a significant correlation between IDH1 mutation and TP53 mutation (p=0.004). Although IDH1 mutation showed a positive correlation with 1p/19q deletion, the association was not statistically significant (p=0.653). There was no correlation with EGFR amplification or PTEN deletion. CONCLUSION IDH1 mutations are present in large proportion of Indian patients with diffuse astrocytic and oligodendroglial neoplasms similar to the reported literature form west. The frequency is lower in primary GBMs and as compared to secondary GBMs. Association with younger age and positive correlation with TP53 mutation and 1p/19q loss is observed. More importantly it is emerging as an independent prognostic marker. Hence the greatest challenge now is establishing a reliable user friendly test for incorporating this novel genetic alteration to routine clinical practice.

Collaboration


Dive into the Prerana Jha's collaboration.

Top Co-Authors

Avatar

Chitra Sarkar

All India Institute of Medical Sciences

View shared research outputs
Top Co-Authors

Avatar

Mehar Chand Sharma

All India Institute of Medical Sciences

View shared research outputs
Top Co-Authors

Avatar

Vaishali Suri

All India Institute of Medical Sciences

View shared research outputs
Top Co-Authors

Avatar

Pankaj Pathak

All India Institute of Medical Sciences

View shared research outputs
Top Co-Authors

Avatar

Suvendu Purkait

All India Institute of Medical Sciences

View shared research outputs
Top Co-Authors

Avatar

Vikas Sharma

All India Institute of Medical Sciences

View shared research outputs
Top Co-Authors

Avatar

Shashank Sharad Kale

All India Institute of Medical Sciences

View shared research outputs
Top Co-Authors

Avatar

Anupam Kumar

All India Institute of Medical Sciences

View shared research outputs
Top Co-Authors

Avatar

Deepak Gupta

All India Institute of Medical Sciences

View shared research outputs
Researchain Logo
Decentralizing Knowledge