Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Prescott T. Leach is active.

Publication


Featured researches published by Prescott T. Leach.


Learning & Memory | 2012

Gadd45b knockout mice exhibit selective deficits in hippocampus-dependent long-term memory

Prescott T. Leach; Shane G. Poplawski; Justin W. Kenney; Barbara Hoffman; Dan A. Liebermann; Ted Abel; Thomas J. Gould

Growth arrest and DNA damage-inducible β (Gadd45b) has been shown to be involved in DNA demethylation and may be important for cognitive processes. Gadd45b is abnormally expressed in subjects with autism and psychosis, two disorders associated with cognitive deficits. Furthermore, several high-throughput screens have identified Gadd45b as a candidate plasticity-related gene. However, a direct demonstration of a link between Gadd45b and memory has not been established. The current studies first determined whether expression of the Gadd45 family of genes was affected by contextual fear conditioning. Gadd45b, and to a lesser extent Gadd45g, were up-regulated in the hippocampus following contextual fear conditioning, whereas Gadd45a was not. Next, Gadd45b knockout mice were tested for contextual and cued fear conditioning. Gadd45b knockout mice exhibited a significant deficit in long-term contextual fear conditioning; however, they displayed normal levels of short-term contextual fear conditioning. No differences between Gadd45b knockout and wild-type mice were observed in cued fear conditioning. Because cued fear conditioning is hippocampus independent, while contextual fear conditioning is hippocampus dependent, the current studies suggest that Gadd45b may be important for long-term hippocampus-dependent memory storage. Therefore, Gadd45b may be a novel therapeutic target for the cognitive deficits associated with many neurodevelopmental, neurological, and psychiatric disorders.


Neurobiology of Learning and Memory | 2014

Cellular, molecular, and genetic substrates underlying the impact of nicotine on learning.

Thomas J. Gould; Prescott T. Leach

Addiction is a chronic disorder marked by long-lasting maladaptive changes in behavior and in reward system function. However, the factors that contribute to the behavioral and biological changes that occur with addiction are complex and go beyond reward. Addiction involves changes in cognitive control and the development of disruptive drug-stimuli associations that can drive behavior. A reason for the strong influence drugs of abuse can exert on cognition may be the striking overlap between the neurobiological substrates of addiction and of learning and memory, especially areas involved in declarative memory. Declarative memories are critically involved in the formation of autobiographical memories, and the ability of drugs of abuse to alter these memories could be particularly detrimental. A key structure in this memory system is the hippocampus, which is critically involved in binding multimodal stimuli together to form complex long-term memories. While all drugs of abuse can alter hippocampal function, this review focuses on nicotine. Addiction to tobacco products is insidious, with the majority of smokers wanting to quit; yet the majority of those that attempt to quit fail. Nicotine addiction is associated with the presence of drug-context and drug-cue associations that trigger drug seeking behavior and altered cognition during periods of abstinence, which contributes to relapse. This suggests that understanding the effects of nicotine on learning and memory will advance understanding and potentially facilitate treating nicotine addiction. The following sections examine: (1) how the effects of nicotine on hippocampus-dependent learning change as nicotine administration transitions from acute to chronic and then to withdrawal from chronic treatment and the potential impact of these changes on addiction, (2) how nicotine usurps the cellular mechanisms of synaptic plasticity, (3) the physiological changes in the hippocampus that may contribute to nicotine withdrawal deficits in learning, and (4) the role of genetics and developmental stage (i.e., adolescence) in these effects.


The Journal of Neuroscience | 2013

Targeted Deletion of the Mouse α2 Nicotinic Acetylcholine Receptor Subunit Gene (Chrna2) Potentiates Nicotine-Modulated Behaviors

Shahrdad Lotfipour; Janet S. Byun; Prescott T. Leach; Christie D. Fowler; Niall P. Murphy; Paul J. Kenny; Thomas J. Gould; Jim Boulter

Baseline and nicotine-modulated behaviors were assessed in mice harboring a null mutant allele of the nicotinic acetylcholine receptor (nAChR) subunit gene α2 (Chrna2). Homozygous Chrna2−/− mice are viable, show expected sex and Mendelian genotype ratios, and exhibit no gross neuroanatomical abnormalities. A broad range of behavioral tests designed to assess genotype-dependent effects on anxiety (elevated plus maze and light/dark box), motor coordination (narrow bean traverse and gait), and locomotor activity revealed no significant differences between mutant mice and age-matched wild-type littermates. Furthermore, a panel of tests measuring traits, such as body position, spontaneous activity, respiration, tremors, body tone, and startle response, revealed normal responses for Chrna2-null mutant mice. However, Chrna2−/− mice do exhibit a mild motor or coordination phenotype (a decreased latency to fall during the accelerating rotarod test) and possess an increased sensitivity to nicotine-induced analgesia in the hotplate assay. Relative to wild-type, Chrna2−/− mice show potentiated nicotine self-administration and withdrawal behaviors and exhibit a sex-dependent enhancement of nicotine-facilitated cued, but not trace or contextual, fear conditioning. Overall, our results suggest that loss of the mouse nAChR α2 subunit has very limited effects on baseline behavior but does lead to the potentiation of several nicotine-modulated behaviors.


Neuropharmacology | 2011

Nicotine ameliorates NMDA receptor antagonist-induced deficits in contextual fear conditioning through high-affinity nicotinic acetylcholine receptors in the hippocampus

Jessica M. André; Prescott T. Leach; Thomas J. Gould

NMDA glutamate receptors (NMDARs) and nicotinic acetylcholine receptors (nAChRs) are both involved in learning and synaptic plasticity. Increasing evidence suggests processes mediated by these receptors may interact to modulate learning; however, little is known about the neural substrates involved in these interactive processes. The present studies investigated the effects of nicotine on MK-801 hydrogen maleate (MK-801) and DL-2-Amino-5-phosphonovaleric acid (APV)-induced disruption of contextual fear conditioning in male C57BL/6J mice, using direct drug infusion and selective nAChR antagonists to define the brain regions and the nAChR subtypes involved. Mice treated with MK-801 showed a deficit in contextual fear conditioning that was ameliorated by nicotine. Direct drug infusion demonstrated that the NMDAR antagonists disrupted hippocampal function and that nicotine acted in the dorsal hippocampus to ameliorate the deficit in learning. The high-affinity nAChR antagonist Dihydro-β-erythroidine hydrobromide (DhβE) blocked the effects of nicotine on MK-801-induced deficits while the α7 nAChR antagonist methyllycaconitine citrate salt hydrate (MLA) did not. These results suggest that NMDARs and nAChRs may mediate similar hippocampal processes involved in contextual fear conditioning. Furthermore, these results may have implications for developing effective therapeutics for the cognitive deficits associated with schizophrenia because a large subset of patients with schizophrenia exhibit cognitive deficits that may be related to NMDAR dysfunction and smoke at much higher rates than the healthy population, which may be an attempt to ameliorate cognitive deficits.


Neurobiology of Learning and Memory | 2014

Nicotine shifts the temporal activation of hippocampal protein kinase A and extracellular signal-regulated kinase 1/2 to enhance long-term, but not short-term, hippocampus-dependent memory

Thomas J. Gould; Derek S. Wilkinson; Emre Yildirim; Rachel L. Poole; Prescott T. Leach; Steven J. Simmons

Acute nicotine enhances hippocampus-dependent learning through nicotine binding to β2-containing nicotinic acetylcholine receptors (nAChRs), but it is unclear if nicotine is targeting processes involved in short-term memory (STM) leading to a strong long-term memory (LTM) or directly targeting LTM. In addition, the molecular mechanisms involved in the effects of nicotine on learning are unknown. Previous research indicates that protein kinase A (PKA), extracellular signal-regulated kinase 1/2 (ERK1/2), and protein synthesis are crucial for LTM. Therefore, the present study examined the effects of nicotine on STM and LTM and the involvement of PKA, ERK1/2, and protein synthesis in the nicotine-induced enhancement of hippocampus-dependent contextual learning in C57BL/6J mice. The protein synthesis inhibitor anisomycin impaired contextual conditioning assessed at 4 h but not 2 h post-training, delineating time points for STM (2 h) and LTM (4 h and beyond). Nicotine enhanced contextual conditioning at 4, 8, and 24 h but not 2 h post-training, indicating nicotine specifically enhances LTM but not STM. Furthermore, nicotine did not rescue deficits in contextual conditioning produced by anisomycin, suggesting that the nicotine enhancement of contextual conditioning occurs through a protein synthesis-dependent mechanism. In addition, inhibition of dorsal hippocampal PKA activity blocked the effect of acute nicotine on learning, and nicotine shifted the timing of learning-related PKA and ERK1/2 activity in the dorsal and ventral hippocampus. Thus, the present results suggest that nicotine specifically enhances LTM through altering the timing of PKA and ERK1/2 signaling in the hippocampus, and suggests that the timing of PKA and ERK1/2 activity could contribute to the strength of memories.


Behavioral Neuroscience | 2013

The effects of acute nicotine, chronic nicotine, and withdrawal from chronic nicotine on performance of a cued appetitive response.

Prescott T. Leach; Kristy A. Cordero; Thomas J. Gould

Nicotine is a widely used addictive drug, with an estimated 73 million Americans 12 years of age or older having used a tobacco product in the last month, despite documented risks to personal health. Nicotine alters cognitive processes, which include effects on attention and impulsivity, a mechanism that may contribute to the addictive properties of the drug. Individuals with a variety of psychological disorders ranging from attention deficit hyperactivity disorder (ADHD) to schizophrenia smoke at a higher rate than the rest of the population and show deficits in impulse control. The present studies evaluated the effects of acute, chronic, and withdrawal from chronic nicotine on an operant task that measured premature and signaled nose pokes, as well as performance efficiency in C57BL/6J mice. Results indicate that acute nicotine (0.09 mg/kg intraperitoneally) does not alter the acquisition of the task, but does significantly increase performance efficiency once the behavior has been learned. In contrast, chronic nicotine (0, 6.3, 12.6, and 36 mg/kg/day subcutaneously) and withdrawal from chronic nicotine had no effect on performance efficiency. These results suggest that initial nicotine use may have beneficial effects on inhibitory control, but these effects are not maintained with chronic nicotine consumption as tolerance develops. The findings may provide an explanation for higher rates of smoking in patients with impulse control issues, as the smoking may represent an initial attempt at self-medication.


Neurobiology of Learning and Memory | 2015

Stronger learning recruits additional cell-signaling cascades: c-Jun-N-terminal kinase 1 (JNK1) is necessary for expression of stronger contextual fear conditioning

Prescott T. Leach; Justin W. Kenney; Thomas J. Gould

Increased training often results in stronger memories but the neural changes responsible for these stronger memories are poorly understood. It is proposed here that higher levels of training that result in stronger memories recruit additional cell signaling cascades. This study specifically examined if c-Jun N-terminal kinase 1 (JNK1) is involved in the formation of stronger fear conditioning memories. Wildtype (WT), JNK1 heterozygous (Het), and JNK1 knockout (KO) mice were fear conditioned with 1 trial, 2 trials, or 4 trials. All mice learned both contextual (hippocampus-dependent) and cued (hippocampus-independent) fear conditioning but for contextual fear conditioning only, the JNK1 KO mice did not show higher levels of learning with increased trials. That is, WT mice showed a significant linear increase in contextual fear conditioning as training trials increased from 1 to 2 to 4 trials whereas KO mice showed the same level of contextual fear conditioning as WT mice for 1 trial training but did not have increased levels of contextual fear conditioning with additional trials. These data suggest that JNK1 may not be critical for learning but when higher levels of hippocampus-dependent learning occur, JNK1 signaling is recruited and is necessary for stronger hippocampus-dependent memory formation.


Neuroscience Letters | 2016

c-Jun-N-terminal kinase 1 is necessary for nicotine-induced enhancement of contextual fear conditioning.

Prescott T. Leach; Justin W. Kenney; Thomas J. Gould

Acute nicotine enhances hippocampus-dependent learning. Identifying how acute nicotine improves learning will aid in understanding how nicotine facilitates the development of maladaptive memories that contribute to drug-seeking behaviors, help development of medications to treat disorders associated with cognitive decline, and advance understanding of the neurobiology of learning and memory. The effects of nicotine on learning may involve recruitment of signaling through the c-Jun N-terminal kinase family (JNK 1-3). Learning in the presence of acute nicotine increases the transcription of mitogen-activated protein kinase 8 (MAPK8, also known as JNK1), likely through a CREB-dependent mechanism. The functional significance of JNK1 in the effects of acute nicotine on learning, however, is unknown. The current studies undertook a backward genetic approach to determine the functional contribution JNK1 protein makes to nicotine-enhanced contextual fear conditioning. JNK1 wildtype (WT) and knockout (KO) mice were administered acute nicotine prior to contextual and cued fear conditioning. 24h later, mice were evaluated for hippocampus-dependent (contextual fear conditioning) and hippocampus-independent (cued fear conditioning) memory. Nicotine selectively enhanced contextual conditioning in WT mice, but not in KO mice. Nicotine had no effect on hippocampus-independent learning in either genotype. JNK1 KO and WT mice given saline showed similar levels of learning. These data suggest that JNK1 may be recruited by nicotine and is functionally necessary for the acute effects of nicotine on learning and memory.


Nicotine & Tobacco Research | 2015

Withdrawal From Chronic Nicotine Reduces Thyroid Hormone Levels and Levothyroxine Treatment Ameliorates Nicotine Withdrawal-Induced Deficits in Hippocampus-Dependent Learning in C57BL/6J Mice

Prescott T. Leach; Erica Holliday; Munir Gunes Kutlu; Thomas J. Gould

INTRODUCTION Cigarette smoking alters a variety of endocrine systems including thyroid hormones. Altered thyroid hormone signaling may lead to a subclinical or overt hypothyroid condition that could contribute to nicotine withdrawal-related symptoms, such as cognitive deficits. Thus, normalizing thyroid hormone levels may represent a novel therapeutic target for ameliorating nicotine withdrawal-associated cognitive deficits. METHODS The current studies conducted an analysis of serum thyroid hormone levels after chronic and withdrawal from chronic nicotine treatment in C57BL/6J mice using an enzyme-linked immunosorbent assay. The present studies also evaluated the effect of synthetic thyroid hormone (levothyroxine) on contextual and cued memory. RESULTS The current studies found that nicotine withdrawal reduces secreted thyroid hormone levels by 9% in C57BL/6J mice. Further, supplemental thyroid hormone not only enhanced memory in naïve animals, but also ameliorated deficits in hippocampus-dependent learning associated with nicotine withdrawal. CONCLUSIONS These results suggest that smokers attempting to quit should be monitored closely for changes in thyroid function. If successfully treated, normalization of thyroid hormone levels may ameliorate some deficits associated with nicotine withdrawal and this may lead to higher rates of successful abstinence.


Neuropharmacology | 2015

Thyroid receptor β involvement in the effects of acute nicotine on hippocampus-dependent memory

Prescott T. Leach; Justin W. Kenney; David A. Connor; Thomas J. Gould

Cigarette smoking is common despite adverse health effects. Nicotine’s effects on learning may contribute to addiction by enhancing drug-context associations. Effects of nicotine on learning could be direct or could occur by altering systems that modulate cognition. Because thyroid signaling can alter cognition and nicotine/smoking may change thyroid function, nicotine could affect learning through changes in thyroid signaling. These studies investigate the functional contributions of thyroid receptor (TR) subtypes β and α1 to nicotine-enhanced learning and characterize the effects of acute nicotine and learning on thyroid hormone levels. We conducted a high throughput screen of transcription factor activity to identify novel targets that may contribute to the effects of nicotine on learning. Based on these results, which showed that combined nicotine and learning uniquely acted to increase TR activation, we identified TRs as potential targets of nicotine. Further analyses were conducted to determine the individual and combined effects of nicotine and learning on thyroid hormone levels, but no changes were seen. Next, to determine the role of TRβ and TRα1 in the effects of nicotine on learning, mice lacking the TRβ or TRα1 gene and wildtype littermates were administered acute nicotine prior to fear conditioning. Nicotine enhanced contextual fear conditioning in TRα1 knockout mice and wildtypes from both lines but TRβ knockout mice did not show nicotine-enhanced learning. This finding supports involvement of TRβ signaling in the effect of acute nicotine on hippocampus-dependent memory. Acute nicotine enhances learning and these effects may involve processes regulated by the transcription factor TRβ.

Collaboration


Dive into the Prescott T. Leach's collaboration.

Top Co-Authors

Avatar

Thomas J. Gould

Pennsylvania State University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jim Boulter

Salk Institute for Biological Studies

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge