Preston R. Larson
University of Oklahoma
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Preston R. Larson.
Applied Physics Letters | 1999
M. K. Herndon; Reuben T. Collins; R. E. Hollingsworth; Preston R. Larson; Matthew B. Johnson
Near-field scanning optical microscopy (NSOM) patterning of hydrogenated amorphous silicon (a-Si:H) has been explored. Our sample preparation technique produces films that are stable over several days. The etching process used is highly selective, allowing the unexposed a-Si:H to be completely removed while patterns with line heights equal to the original film thickness remain in exposed regions. We are able to generate patterns with and without the use of light. We have found that the probe dither amplitude greatly affects the linewidth and height of patterns generated without light. We also find that the exposure required for the NSOM to optically generate patterns agrees with threshold dosages determined by far-field exposure studies. Feature sizes of approximately 100 nm, comparable to the probe diameter, were obtained.
Applied Physics Letters | 2014
Binbin Weng; Jijun Qiu; Zijian Yuan; Preston R. Larson; Gregory W. Strout; Z. Shi
The CaF2 nano-structures grown by thermal vapor deposition are presented. Significant responsivity improvement (>200%) of mid-infrared PbSe detectors incorporating a 200 nm nano-structured CaF2 coating was observed. The detector provides a detectivity of 4.2 × 1010 cm · Hz1/2/W at 3.8 μm, which outperforms all the reported un-cooled PbSe detectors. Structural investigations show that the coating is constructed by tapered-shape nanostructures, which creates a gradient refractive-index profile. Analogy to moth-eye antireflective mechanism, the gradient refractive-index nanostructures play the major roles for this antireflection effect. Some other possible mechanisms that help enhance the device performance are also discussed in the work.
New Phytologist | 2017
Jiqing Gou; Chunxiang Fu; Sijia Liu; Chaorong Tang; Smriti Debnath; Amy Flanagan; Yaxin Ge; Yuhong Tang; Qingzhen Jiang; Preston R. Larson; Jiangqi Wen; Zeng-Yu Wang
Grasses possess basal and aerial axillary buds. Previous studies have largely focused on basal bud (tiller) formation but scarcely touched on aerial buds, which may lead to aerial branch development. Genotypes with and without aerial buds were identified in switchgrass (Panicum virgatum), a dedicated bioenergy crop. Bud development was characterized using scanning electron microscopy. Microarray, RNA-seq and quantitative reverse transcription polymerase chain reaction (RT-qPCR) were used to identify regulators of bud formation. Gene function was characterized by down-regulation and overexpression. Overexpression of miR156 induced aerial bud formation in switchgrass. Various analyses revealed that SQUAMOSA PROMOTER BINDING PROTEIN LIKE4 (SPL4), one of the miR156 targets, directly regulated aerial axillary bud initiation. Down-regulation of SPL4 promoted aerial bud formation and increased basal buds, while overexpression of SPL4 seriously suppressed bud formation and tillering. RNA-seq and RT-qPCR identified potential downstream genes of SPL4. Unlike all previously reported genes acting as activators of basal bud initiation, SPL4 acts as a suppressor for the formation of both aerial and basal buds. The miR156-SPL4 module predominantly regulates aerial bud initiation and partially controls basal bud formation. Genetic manipulation of SPL4 led to altered plant architecture with increased branching, enhanced regrowth after cutting and improved biomass yield.
Journal of Medical Devices-transactions of The Asme | 2013
Stephane Descamps; Komla O. Awitor; Vincent Raspal; Matthew B. Johnson; Roshan S. P. Bokalawela; Preston R. Larson; Curtis F. Doiron
In this work, we modified the topography of commercial titanium orthopedic screws using electrochemical anodization in a 0.4 wt% hydrofluoric acid solution to produce titanium dioxide nanotube layers. The morphology of the nanotube layers were characterized using scanning electron microscopy. The mechanical properties of the nanotube layers were investigated by screwing and unscrewing an anodized screw into several different types of human bone while the torsional force applied to the screwdriver was measured using a torque screwdriver. The range of torsional force applied to the screwdriver was between 5 and [Formula: see text]. Independent assessment of the mechanical properties of the same surfaces was performed on simple anodized titanium foils using a triboindenter. Results showed that the fabricated nanotube layers can resist mechanical stresses close to those found in clinical situations.
Applied Physics Letters | 2016
Hossein Lotfi; Lu Li; S. M. Shazzad Rassel; Rui Q. Yang; Cédric J. Corrége; Matthew B. Johnson; Preston R. Larson; J. A. Gupta
We report on the demonstration of a monolithically integrated mid-IR interband cascade (IC) laser and photodetector operating at room temperature. The base structure for the integrated laser and detector is a six-stage type-I IC laser with GaInAsSb quantum well active regions. The laser/detector pair was defined using focused ion beam milling. The laser section lased in cw mode with an emission wavelength of ∼3.1 μm at 20 °C and top-illuminated photodetectors fabricated from the same wafer had Johnson-noise-limited detectivity of 1.05 × 109 cm Hz1/2/W at this wavelength and temperature. Under the same condition, the detectivity for the edge illumination configuration for the monolithically integrated laser/photodetector pairs is projected to be as high as 1.85 × 1010 cm Hz1/2/W, as supported by experimentally observed high photocurrent and open-circuit voltage. These high performance characteristics for monolithically integrated IC devices show great prospects for on-chip integration of mid-IR photonic de...
Materials Science and Engineering: C | 2018
Fernando Luis Esteban Florez; Rochelle Denise Hiers; Preston R. Larson; Matthew B. Johnson; Edgar A. O'Rear; Adam J. Rondinone; Sharukh S. Khajotia
The development of dental adhesive resins with long-lasting antibacterial properties is a possible solution to overcome the problem of secondary caries in modern adhesive dentistry. OBJECTIVES (i) Synthesis and characterization of nitrogen-doped titanium dioxide nanoparticles (N_TiO2), (ii) topographical, compositional and wettability characterization of thin-films (unaltered and experimental) and, (iii) antibacterial efficacy of N_TiO2-containing dental adhesives against Streptococcus mutans biofilms. MATERIALS AND METHODS Nanoparticles were synthesized and characterized using different techniques. Specimens (diameter = 12 mm, thickness ≅ 15 μm) of OptiBond Solo Plus (Kerr Corp., USA) and experimental adhesives [50, 67 and 80% (v/v)] were fabricated, photopolymerized (1000 mW/cm2, 1 min) and UV-sterilized (254 nm, 800,000 μJ/cm2) for microscopy, spectroscopy, wettability and antibacterial testing. Wettability was assessed with a contact angle goniometer by dispensing water droplets (2 μL) onto four random locations of each specimen (16 drops/group). Drop profiles were recorded (1 min, 25 frames/s, 37 °C) and contact angles were calculated at time = 0 s (θINITIAL) and time = 59 s (θFINAL). Antibacterial testing was performed by growing S. mutans (UA159-ldh, JM10) biofilms for either 3 or 24 h (anaerobic conditions, 37 °C) with or without continuous light irradiation (410 ± 10 nm, 3 h = 38.75 J/cm2, 24 h = 310.07 J/cm2) against the surfaces of sterile specimens. RESULTS N_TiO2 was successfully prepared using solvothermal methods. Doped-nanoparticles displayed higher light absorption levels when compared to undoped titania. Experimental adhesives demonstrated superior antibacterial efficacy in dark conditions. CONCLUSIONS The findings presented herein suggest that N_TiO2 is a feasible antibacterial agent against cariogenic biofilms.
Proceedings of SPIE | 2017
Hossein Lotfi; S. M. Shazzad Rassel; Lu Li; Cédric J. Corrége; Rui Q. Yang; Preston R. Larson; J. A. Gupta; Matthew B. Johnson
The family of interband cascade (IC) IR devices includes: interband cascade lasers (ICLs), interband cascade IR photodetectors (ICIPs), and thermophotovoltaics (ICTPVs). To date, developments at the component level have resulted in power-efficient mid-IR ICLs with CW operation at room temperature and above as well as uncooled mid-IR low-noise and high-speed ICIPs. However, there has been little effort to integrate these devices on a single chip for an IR photonic system. Since an appropriately designed ICL can operate as an IR photodetector at zero bias, ICLs and ICIPs can be grown and fabricated on a single chip, enabling the on-chip integration of IR lasers and photodetectors for mid- and long-IR wavelengths. We report the first demonstration of monolithically integrated mid-IR IC devices operating at room temperature. The unit consists of a monolithically integrated ICL and ICIP fabricated using focused ion beam (FIB) milling. The base structure is a type-I ICL with quaternary GaInAsSb active regions. The laser peak emission wavelength is 3.1 μm at 20 ◦C and the 10% cut-off wavelength of the corresponding ICIP is 3.3 μm, which ensures sufficient photon absorption at the lasing wavelength. For a laser/detector unit (at 20 ◦C) with a 12 μm gap between laser mirror and detector, the open-circuit voltage of the ICIP is 1.06 V and its short-circuit current is 106 μA, resulting from the laser emission (2.6 mW/facet). These preliminary results demonstrate the practical application of integrated IC devices for high-temperature, high-bandwidth and power-efficient on-chip sensors and optical communication mid-IR photonic systems.
Materials Research Express | 2016
Binbin Weng; Jingyu Wang; Preston R. Larson; Yingtao Liu
The work reports experimental studies of ZnO thin films grown on Si(100) wafers using a customized thermal atomic layer deposition. The impact of growth parameters including H2O/DiethylZinc (DEZn) dose ratio, background pressure, and temperature are investigated. The imaging results of scanning electron microscopy and atomic force microscopy reveal that the dose ratio is critical to the surface morphology. To achieve high uniformity, the H2O dose amount needs to be at least twice that of DEZn per each cycle. If the background pressure drops below 400 mTorr, a large amount of nanoflower-like ZnO grains would emerge and increase surface roughness significantly. In addition, the growth temperature range between 200 °C and 250 °C is found to be the optimal growth window. And the crystal structures and orientations are also strongly correlated to the temperature as proved by electron back-scattering diffraction and x-ray diffraction results.
ASME/STLE 2009 International Joint Tribology Conference | 2009
Hengyu Wang; Min Zou; Robert L. Jackson; Preston R. Larson; Matthew B. Johnson
This paper presents numerical and experimental studies of nanoindentation of a silicon substrate covered by patterned Ni nanodot asperities. A multi-asperity contact model was developed in this study to simulate the contact between a spherical indenter and the Ni nanodot asperities. In this model, the silicon substrate is considered to be deformable and the nanodots are allowed to interact with each other through the deformation of the substrate. The load-deformation relationship predicted by the model was found to be in good agreement with the experimental results. This model can also be used to predict indentation load-deformation relationships of a deformable substrate covered by nanodots with known size and location distributions, but not necessarily following a repetitive pattern.Copyright
Nano Letters | 2004
Kevin L. Hobbs; Preston R. Larson; Guoda D. Lian; Joel C. Keay; Matthew B. Johnson