Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Priam V. Pillai is active.

Publication


Featured researches published by Priam V. Pillai.


MRS Proceedings | 2008

Stochastic System Identification of the Compliance of Conducting Polymers

Priam V. Pillai; Ian W. Hunter

Conducting polymers such as polypyrrole, polythiophene and polyaniline are currently studied as novel biologically inspired actuators. The actuation mechanism of these materials depends upon the motion of ions in and out of the polymer film during electrochemical cycling. The diffusion of ions into the bulk of the film causes the dynamic mechanical compliance (or modulus) of the material to change during the actuation process. The mechanism of this change in compliance is not fully understood as it can depend on many different factors such as oxidation state, solvation of the film and the level of counter ion swelling. In-situ measurement of the dynamic compliance of polypyrrole as a function of charge is difficult since the compliance depends upon the excitation frequency as well as the electrochemical stimulus. Pytel et al [1] studied the effect of the changing elastic modulus in-situ at a fixed frequency. In this study we describe a technique to measure the compliance response of polypyrrole as a function of frequency and electrochemistry. A voltage input and a simultaneous stress input was applied to polypyrrole actuated in neat 1-butyl-3-methylimidazolium hexaflourophosphate. The stress input was a stochastic force with a bandwidth of 30 Hz and it allows us to compute the mechanical compliance transfer function of polypyrrole as function of the electrochemistry. Our studies show that the low frequency compliance changes by 50% as charge was injected into the polymer. The compliance changes reversibly as ions diffuse in and out of the film which indicates that the compliance depends upon the level of counter ion swelling.


Review of Scientific Instruments | 2011

Application of stochastic system identification to the study of the compliance of electroactive polymers.

Priam V. Pillai; Ian W. Hunter; Emanuel Hernandez

Electroactive polymers have shown promising applications as transducers that can mimic biological muscle. The modulus or the compliance of many of these devices can change significantly as they are actuated making these materials attractive for applications that require tunable stiffness. We have developed a dynamic mechanical analyzer that is capable of making in situ measurements of the dynamic compliance transfer function of conducting polymers as a function of an electrochemical stimulus. We do this by simultaneously applying a stochastic stress waveform over a potential waveform and calculating the compliance as it changes over the course of electrochemical excitation. Using these signals we can calculate the compliance transfer function between 0.1 and 100 Hz and the impulse response function with up to 3% variation in its parameters. These functions are then computed as charge is injected into the polymer and it is shown that the low frequency gain of the transfer function can change by 30%-40% in the electrochemical system tested.


ASME 2010 Conference on Smart Materials, Adaptive Structures and Intelligent Systems, Volume 2 | 2010

Conducting Polymer-Based Multifunctional Materials

Eli Travis Paster; Bryan P. Ruddy; Priam V. Pillai; Ian W. Hunter

Conducting polymers are employable as low-voltage actuators, sensors, energy storage and delivery components, structural elements, computational circuitry, memory, and electronic components, making them a versatile choice for creating integrated, multifunctional materials and devices. Here we show one such conducting polymer-based, multifunctional system, derived from the versatility of the conducting polymer polypyrrole. Three functions of polypyrrole (actuation, length sensation, and energy storage) have been individually evaluated and cooperatively combined in the synthesis of a multifunctional, polymeric system that actuates, senses strain deformation, and stores energy. The system operates whereby the strain of a polypyrrole actuator is measured by a polypyrrole length sensor, whilst being powered by an array of polypyrrole supercapacitors. Independently, polypyrrole actuators were evaluated at 250 discrete frequencies ranging from 0.01 to 10 Hz using fixed, ±1 V sinusoidal excitation. Polypyrrole length sensors were evaluated using a thin-film dynamic mechanical analyzer for the same range of frequencies with a 2% sinusoidal input strain. Polypyrrole supercapacitors were evaluated using cyclic voltammetry (−1.0 V to +1.0 V; 12.5 to 100 mV/sec) and galvanostatic charge-discharge cycling (0.5 to 2 mA/mg). As an actuator, polypyrrole samples showed measureable actuation strain between 0.001% and 1.6% for the frequency range tested, with amplitude versus frequency decay behavior similar to a first-order low-pass filter. As a length sensor, polypyrrole samples showed linearelastic behavior up to 3% strain and gauge factors near 4. As a symmetric supercapacitor, polypyrrole had capacitance values higher than 20 kF/kg, energy densities near 20 kJ/kg, and power densities near 2 kW/kg. The evaluation of each component, independently, justified creating a cooperative system composed of these three components operating simultaneously. Polypyrrole supercapacitors provided ample power to excite polypyrrole actuators. Polypyrrole length sensors attached in series to polypyrrole actuators were capable of measuring strain from coupled polypyrrole actuators. Performance metrics and future possibilities regarding conducting polymer-based multifunctional materials are discussed.Copyright


international conference of the ieee engineering in medicine and biology society | 2009

Thermo-mechanical characterization of polypyrrole compliance using stochastic system identification

Priam V. Pillai; Ian W. Hunter

Conducting polymers such as polypyrrole are studied as novel biologically inspired actuators. Their capacity to generate stresses of up to 5 MPa, strains of up to 10% at low voltages (2 V) make them ideal candidates to be used as artificial muscle materials. It has been shown that the modulus of polypyrrole can change when the material is electrochemically excited. In this paper we develop a technique that uses a stochastic stress input that can be used to measure the compliance frequency response (between 10-2 Hz and 100 Hz) of polypyrrole in-situ. We validate the compliance calculated from the stochastic stress input by comparing it with the compliance calculated from a single sinusoidal stress input. We also measure the compliance as a function of temperature using both techniques and show that the stochastic compliance follows the same trends as the compliance calculated from single sinusoidal stress input.


MRS Proceedings | 2009

The Effect of Ion Delivery on Polypyrrole Strain and Strain Rate under Elevated Temperature

Yenmei Keng; Priam V. Pillai; Ian W. Hunter

Conducting polymers can act as actuators when an electrochemical stimulus causes the materials to undergo volumetric changes. Ion flux into the polymer causes volumetric expansion and ion outflow causes contraction. Polypyrrole is an attractive actuator material due to its ability to generate up to 30 MPa active stress and 10% to 26% maximum strain with voltage supply lower than 2 V. The polymer’s mechanical performance depends upon the solvent used and the dominating ion species. In this study, we used 1-butyl-3-methylimidazolium hexafluorophosphate (BMIM-PF6) to characterize the effect of temperature increase on ion flow and how it contributes to strain and maximum strain rate of polypyrrole. In this solvent, the cation BMIM + diffuses in and out of the polymer under applied voltage to cause strain changes. For approximately each increment of 10 o C from 27 o C to 83 o C, isotonic tests were done with +/-0.8 V square pulses, using a custom built device that is capable of performing temperature controlled dynamic mechanical analyses and electrochemistry simultaneously. Results showed that, independent of voltage polarity, from 27 to 83 o C the strain increased from 0.4% to 2.0%. Both the maximum charge and strain rate rates increased with temperature, and were higher at positive voltage than at negative voltage throughout the same temperature range. Positive voltage caused the maximum strain rate to increase exponentially from 0.1 %/s to 0.67 %/s, while negative voltage caused it to increase more linearly from 0.06 %/s to 0.23 %/s. The results suggest that the increase in strain resulted from the charge delivered to the polymer in higher quantities at higher temperature. Furthermore, BMIM + ions are expelled faster than those being attracted in to the polymer, perhaps due to the ions preferentially remaining in the bulk solution. As the temperature increased, the ionic mobility increased and as a result, BMIM + ions are expelled back into the solvent


MRS Proceedings | 2009

In-Situ Measurement of Actuation in Thin Films of Conducting Polymers

Lauren Montemayor; Priam V. Pillai; Ian W. Hunter

Conducting polymer materials can be developed as muscle-like actuators for applications in robotics, micro-electro mechanical systems, drug delivery systems etc. These materials are available in a large number of different varieties that can be synthesized and processed in different ways. However, their applications as actuators are limited due to the inability to create conducting polymer materials with robust mechanical properties. Currently most of the dynamic mechanical analysis technologies require the polymer created to be free standing and able to withstand large stresses. This severely limits the development of new materials with potential actuator applications. In this study, a technique to measure the actuation of polymers in the electrochemical deposition environment is described. This allows testing of an electrochemically grown conducting polymer sample on the surface of the deposition electrode itself. Thin polypyrrole films (2 to 20 microns thick) doped with tetraethylammonium hexaflourophosphate were grown on the surface of a glassy carbon electrode. These films were then tested on the surface of the glassy carbon using a custom built electrochemical dynamic mechanical analyzer. A square wave potential (+/- 0.8 V) is applied to the films that results in the actuation of the films. The films are able to generate a changing force of 3 mN of force against a 0.1 N sensor preloaded at 5 mN. The resulting magnitude of the measured force is a function of the film thickness while the change in force due to actuation is approximately constant.


ASME 2009 Conference on Smart Materials, Adaptive Structures and Intelligent Systems | 2009

Characterizing the Effect of Temperature Increase on Polypyrrole Active Strength and Stress Rate

Yenmei Keng; Priam V. Pillai; Ian W. Hunter

Conducting polymers can be utilized as actuators due to the materials’ ability to undergo volumetric change caused by an electrochemical stimulus. Polypyrrole is an attractive electroactive polymer and capable of producing large active stress. Its mechanical performance can be improved by increasing temperature. This work describes a custom built device that is capable of performing dynamic mechanical analyses and electrochemistry simultaneously. In addition, there is a temperature control system that heats (or cools) with Peltier thermoelectric devices controlled by a PID controller. In this study, we characterized the effect of temperature increase on polypyrrole actuation strength and stress rate. For approximately each increment of 10°C from 27–83°C, stiffness measurements and isometric tests in 1-butyl-3-methylimidazolium hexafluorophosphate were done with sample preloaded to about 4 MPa. Results showed that the stiffness decreased by 21% as the temperature was elevated from 25–80°C. The maximum charge per polymer volume increased by 983% as the temperature was increased from 27–75°C and started to level off past 75°C. The peak stress changed with temperature in a similar trend as maximum charge per volume. Peak stress was 0.2 MPa at 27°C and increased to 7 MPa as temperature was increased to 75°C. Moreover, the stress rate increased until 85°C. The results suggest that peak stress depends upon the ionic mobility as opposed to stiffness since both peak stress and charge start to plateau past 75°C.© 2009 ASME


Polymer | 2011

Biaxial elastic–viscoplastic behavior of Nafion membranes

Meredith N. Silberstein; Priam V. Pillai; Mary C. Boyce


Archive | 2010

Development of Soldier Conformable Antennae Using Conducting Polymers

Priam V. Pillai; Eli Travis Paster; Lauren Montemayor; Chris Benson; Ian W. Hunter


SPIE | 2011

Multi-component single-substrate conducting polymer actuation systems and fabrication techniques

Eli Travis Paster; Bryan P. Ruddy; Priam V. Pillai; Ian W. Hunter

Collaboration


Dive into the Priam V. Pillai's collaboration.

Top Co-Authors

Avatar

Ian W. Hunter

Massachusetts Institute of Technology

View shared research outputs
Top Co-Authors

Avatar

Eli Travis Paster

Massachusetts Institute of Technology

View shared research outputs
Top Co-Authors

Avatar

Bryan P. Ruddy

Massachusetts Institute of Technology

View shared research outputs
Top Co-Authors

Avatar

Lauren Montemayor

Massachusetts Institute of Technology

View shared research outputs
Top Co-Authors

Avatar

Yenmei Keng

Massachusetts Institute of Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Miguel A. Saez

Massachusetts Institute of Technology

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge