Priit Kupper
University of Tartu
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Priit Kupper.
PLOS ONE | 2012
Arvo Tullus; Priit Kupper; Arne Sellin; Leopold Parts; Jaak Sober; Tea Tullus; Krista Lõhmus; Anu Sõber; Hardi Tullus
At northern latitudes a rise in atmospheric humidity and precipitation is predicted as a consequence of global climate change. We studied several growth and functional traits of hybrid aspen (Populus tremula L.×P. tremuloides Michx.) in response to elevated atmospheric humidity (on average 7% over the ambient level) in a free air experimental facility during three growing seasons (2008–2010) in Estonia, which represents northern temperate climate (boreo-nemoral zone). Data were collected from three humidified (H) and three control (C) plots, and analysed using nested linear models. Elevated air humidity significantly reduced height, stem diameter and stem volume increments and transpiration of the trees whereas these effects remained highly significant also after considering the side effects from soil-related confounders within the 2.7 ha study area. Tree leaves were smaller, lighter and had lower leaf mass per area (LMA) in H plots. The magnitude and significance of the humidity treatment effect – inhibition of above-ground growth rate – was more pronounced in larger trees. The lower growth rate in the humidified plots can be partly explained by a decrease in transpiration-driven mass flow of NO3 − in soil, resulting in a significant reduction in the measured uptake of N to foliage in the H plots. The results suggest that the potential growth improvement of fast-growing trees like aspens, due to increasing temperature and atmospheric CO2 concentration, might be smaller than expected at high latitudes if a rise in atmospheric humidity simultaneously takes place.
Physiologia Plantarum | 2008
Arne Sellin; Eele Õunapuu; Priit Kupper
Variation in leaf hydraulic conductance (K(L)) and distribution of resistance in response to light intensity and duration were examined in shoots of silver birch (Betula pendula Roth). K(L) was determined on detached shoots using the evaporative flux method (transpiration was measured with a porometer and water potential drop with a pressure chamber). Although K(L) depended on light duration per se, its dynamics was largely determined by leaf temperature (T(L)). Both upper-crown leaves and branches developed in well-illuminated environment exhibited higher hydraulic efficiency compared with the lower crown, accounting for vertical trends of apparent soil-to-leaf hydraulic conductance in canopy of silver birch revealed in our previous studies. K(L) varied significantly with light intensity, the highest values for both shade and sun foliage were recorded at photosynthetic photon flux density of 330 micromol m(-2) s(-1). Light responses of K(L) were associated evidently with an irradiance-mediated effect on extravascular tissues involving regulation of cell membrane aquaporins. Effects of irradiance on K(L) resulted in changes of Psi(L), bringing about considerable alteration in partitioning of the resistance between leaves and branch (leafless shoot stem): the contribution of leaves to the shoot total resistance decreased from 94% at -1.0 MPa to 75% at -0.2 MPa. Treatment with HgCl2 decreased hydraulic conductance of both leaves and branches, implying that condition of bordered pit membranes or shoot living tissues may be involved in responses of xylem conductance to Hg2+.
Oecologia | 2005
Arne Sellin; Priit Kupper
Responses of leaf conductance (gL) to variation in photosynthetic photon flux density (QP), leaf-to-air vapour pressure difference (VPD), bulk leaf water potential (Ψx), and total hydraulic conductance (GT) were examined in silver birch (Betula pendula Roth) with respect to leaf position in the crown. To reduce limitations caused by insufficient water supply or low light availability, experiments were also performed with branchlets cut from two different canopy layers. The intact upper-canopy leaves demonstrated 1.8–2.0 times higher (P<0.001) daily maxima of gL compared with the lower-canopy leaves growing in the shadow of upper branches. In the morning, gL in the shade foliage was primarily constrained by low light availability, in the afternoon, by limited water supply. Leaf conductance decreased when Ψx fell below certain values around midday, while the sun foliage experienced greater negative water potentials than the shade foliage. Midday stomatal openness was controlled by leaf water status and temperature, rather than by transpiration rate (E) via the feedforward mechanism. Mean GT was 1.7 times higher (P<0.001) for the upper-canopy foliage compared to that of the lower canopy. At least 34–39% of the total resistance to the water flow from soil up to the shade foliage, and 54% up to the sun foliage, resided in 30-cm distal parts of the branches. Artificial reduction of hydraulic constraints raised Ψx and made gL less sensitive to changes in both atmospheric and plant factors. Improved water supply increased gL and E in the lower-canopy foliage, but not in the upper-canopy foliage. The results support the idea that leaves in the lower canopy are hydraulically more constrained than in the upper canopy.
Trees-structure and Function | 2006
Arne Sellin; Priit Kupper
Spatial variation in sapwood area to leaf area ratio (Huber value, HV) and specific leaf area (SLA) was examined in branches of closed-canopy trees of silver birch (Betula pendula Roth). HV increased basipetally within a crown and decreased with increasing branch order, but exhibited no significant radial trend along a primary branch. HV was primarily determined by branch position in a crown and branch diameter at the sampling point, being independent of the size of the tree and branch. Greater HV in the lower-crown branches is considered a means to mitigate differences in hydraulic transport capacity between the branches located in different canopy layers. Beside branch position and sampling location on a branch, SLA depended significantly on several other variables characterising tree and branch size. SLA increased basipetally within a crown and along a primary branch, but exhibited no significant trend with branch orders. Because height caused leaf area (AL) to diminish more rapidly than leaf dry weight, AL primarily determined the vertical variation in SLA.
Aob Plants | 2014
Aigar Niglas; Priit Kupper; Arvo Tullus; Arne Sellin
An increase in average air temperature and frequency of rain events is predicted for higher latitudes by the end of the 21st century, accompanied by a probable rise in air humidity. We currently lack knowledge on how forest trees acclimate to rising air humidity in temperate climates. We analysed the leaf gas exchange, sap flow and growth characteristics of hybrid aspen (Populus tremula × P. tremuloides) trees growing at ambient and artificially elevated air humidity in an experimental forest plantation situated in the hemiboreal vegetation zone. Humidification manipulation did not affect the photosynthetic capacity of plants, but did affect stomatal responses: trees growing at elevated air humidity had higher stomatal conductance at saturating photosynthetically active radiation (gs sat) and lower intrinsic water-use efficiency (IWUE). Reduced stomatal limitation of photosynthesis in trees grown at elevated air humidity allowed slightly higher net photosynthesis and relative current-year height increments than in trees at ambient air humidity. Tree responses suggest a mitigating effect of higher air humidity on trees under mild water stress. At the same time, trees at higher air humidity demonstrated a reduced sensitivity of IWUE to factors inducing stomatal closure and a steeper decline in canopy conductance in response to water deficit, implying higher dehydration risk. Despite the mitigating impact of increased air humidity under moderate drought, a future rise in atmospheric humidity at high latitudes may be disadvantageous for trees during weather extremes and represents a potential threat in hemiboreal forest ecosystems.
Functional Plant Biology | 2008
Eve Eensalu; Priit Kupper; Arne Sellin; Märt Rahi; Anu Sõber; Olevi Kull
Stomatal density and size were measured along the light gradient of a Betula pendula Roth. canopy in relation to microclimatic conditions. The theoretical stomatal conductance was calculated using stomatal density and dimensions to predict to what degree stomatal conductance is related to anatomical properties and relative stomatal opening. Stomatal density was higher and leaf area smaller in the upper canopy, whereas epidermal cell density did not change significantly along the canopy light gradient, indicating that stomatal initiation is responsible for differences in stomatal density. Stomatal dimensions - the length of guard cell on the dorsal side and the guard cell width - decreased with declining light availability. Maximum measured stomatal conductance and modelled stomatal conductance were higher at the top of the crown. The stomata operate closer to their maximum openness and stomatal morphology is a more important determinant of stomatal conductance in the top leaves than in leaves of lower canopy. As stomata usually limit photosynthesis more in upper than in lower canopy, it was concluded that stomatal morphology can principally be important for photosynthesis limitation in upper canopy.
Trees-structure and Function | 2006
Priit Kupper; Arne Sellin; John Tenhunen; Markus Schmidt; Märt Rahi
Water relations and gas exchange were studied in the crowns of small European larch (Larix decidua Mill.) trees with respect to branch position. The upper-crown branches showed significantly higher branch sap flux rate (Fla) and branch conductance (gb) compared to the lower crown (P<0.001). Values of leaf conductance (gl), transpiration rate (E) and net photosynthesis (A), averaged for different ranges of atmospheric vapour pressure deficit (VPD), were also higher in the upper crown position. We suppose that the up to 2.6-fold smaller soil-to-leaf hydraulic conductance observed in the lower branches (P<0.001, compared to upper branches) could contribute to the decreased values of Fla, gb, gl, and E in the lower crown position. Variation in tracheid lumen diameter with respect to crown position (P<0.001) supported the hypothesis that branches growing at the crown base are hydraulically more constrained than branches located at the top of the tree. Leaf area to sapwood area ratio (Ala/Asa) exhibited 1.4 times smaller values in lower crown (P<0.01), however, this could not compensate the effect of decreased hydraulic conductivity of the lower-crown branches.
Regional Environmental Change | 2017
Arne Sellin; Meeli Alber; Markku Keinänen; Priit Kupper; Jenna Lihavainen; Krista Lõhmus; Elina Oksanen; Anu Sõber; Jaak Sober; Arvo Tullus
Increasing atmospheric humidity—a climate trend predicted for northern Europe—will reduce water flux through vegetation. Diminished transpirational water flux impacts various physiological processes, causing growth decline in deciduous trees. We propose, based on the results obtained from the long-term free air humidity manipulation experiment, concurrent mechanisms to explain the growth deceleration due to increases in relative air humidity. Reduced atmospheric evaporative demand diminishes nutrient uptake and leads to lower leaf nutritional status and to an unbalanced foliar phosphorus/nitrogen ratio (P:N), resulting in a decline in leaf photosynthetic capacity. Elevated relative humidity induces readjustment of foliar metabolism: disturbed N metabolism, accumulation of starch and changes in secondary metabolite contents probably impair both photosynthetic performance and growth. Increased carbohydrate content in the leaves suggests that sink strength of trees is reduced under elevated humidity. As a consequence of the stress, foliar development is hindered, observed at individual leaf or whole-tree foliage levels, lowering production potential of trees proportionally to their foliar area. Larger investments in stem xylem in relation to foliage cause an increase in the ratio of non-photosynthetic to photosynthetic tissues, leading to larger maintenance respiration costs determined by the volume of parenchymatous tissue. An increase in the proportion of living parenchyma cells in relation to dead xylem elements in sapwood additionally enhances respiration costs. Disproportionate changes in hydraulic versus stomatal conductance become a critical factor in the case of weather extremes, which limit canopy conductance and may induce dysfunction of the hydraulic system. Increasing environmental humidity creates favourable conditions for development of pathogens, increasing frequency of fungal damage.
Frontiers in Microbiology | 2017
Marika Truu; Ivika Ostonen; Jens-Konrad Preem; Krista Lõhmus; Hiie Nõlvak; Teele Ligi; Katrin Rosenvald; Kaarin Parts; Priit Kupper; Jaak Truu
Soil microbes play a fundamental role in forest ecosystems and respond rapidly to changes in the environment. Simultaneously with the temperature increase the climate change scenarios also predict an intensified hydrological cycle for the Baltic Sea runoff region. The aim of this study was to assess the effect of elevated air humidity on the top soil microbial community structure of a silver birch (Betula pendula Roth.) stand by using a free air humidity manipulation facility (FAHM). The bacterial community structures of bulk soil and birch rhizosphere were analyzed using high-throughput sequencing of bacteria-specific16S rRNA gene fragments and quantification of denitrification related genes. The increased air humidity altered both bulk soil and rhizosphere bacterial community structures, and changes in the bacterial communities initiated by elevated air humidity were related to modified soil abiotic and biotic variables. Network analysis revealed that variation in soil bacterial community structural units is explained by altered abiotic conditions such as increased pH value in bulk soil, while in rhizosphere the change in absorptive root morphology had a higher effect. Among root morphological traits, the absorptive root diameter was strongest related to the bacterial community structure. The changes in bacterial community structures under elevated air humidity are associated with shifts in C, N, and P turnover as well as mineral weathering processes in soil. Increased air humidity decreased the nir and nosZ gene abundance in the rhizosphere bacterial community. The potential contribution of the denitrification to the N2O emission was not affected by the elevated air humidity in birch stand soil. In addition, the study revealed a strong link between the bacterial community structure, abundance of denitrification related genes, and birch absorptive root morphology in the ecosystem system adaptation to elevated air humidity.
Ecohydrology | 2018
Priit Kupper; Hiie Ivanova; Anu Sõber; Gristin Rohula-Okunev; Arne Sellin
Ecohydrology. 2018;11:e1927. https://doi.org/10.1002/eco.1927 Abstract Our aim was to investigate the responses of night and daytime water fluxes to environmental stimuli and endogenous drivers in 5 tree species with different water‐use strategies. Data analysis revealed that air vapour pressure deficit (VPD) and wind speed were the main drivers of night‐ time sap flux density (Fnight) in all studied species. For Populus × wettsteinii, Populus tremula, Betula pendula, and Alnus glutinosa, VPD was also the major driver of daytime sap flux density (Fday). In Alnus incana, VPD explained less from the total variation in Fday than the photosynthetic photon flux density (QP). The Fday versus VPD regression slope decreased significantly (p < .001) in the following sequence P. × wettsteinii = P. tremula > B. pendula > A. glutinosa > A. incana. However, the Fnight versus VPD regression slope declined (p < .05) in sequence P. × wettsteinii > B. pendula > P. tremula > A. incana = A. glutinosa. P. × wettsteinii and B. pendula demonstrated highest net photosynthesis rates (Pn) among the all investigated species. Multiple regression analysis (independent factors: leaf dark respiration rate and sucrose, glucose, and starch contents) revealed that sucrose content was the only factor, which explained variation (R = 0.35; p < .01) in predawn leaf conductance (gpd). Our findings suggest that trees ability to open stomata and lose water at night does not depend directly on their daily water‐use strategy but is determined probably by species photosynthetic capacity, growth potential, and nitrogen‐ use strategy.