Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Primal de Lanerolle is active.

Publication


Featured researches published by Primal de Lanerolle.


Nature Cell Biology | 2004

Nuclear actin and myosin I are required for RNA polymerase I transcription

Vlada V. Philimonenko; Jian Zhao; Sebastian Iben; Hana Dingová; Katarína Kyselá; Michal Kahle; Hanswalter Zentgraf; Wilma A. Hofmann; Primal de Lanerolle; Pavel Hozák; Ingrid Grummt

The presence of actin and nuclear myosin I (NMI) in the nucleus suggests a role for these motor proteins in nuclear functions. We have investigated the role of actin and nuclear myosin I (NMI) in the transcription of ribosomal RNA genes (rDNA). Both proteins are associated with rDNA and are required for RNA polymerase I (Pol I) transcription. Microinjection of antibodies against actin or NMI, as well as short interfering RNA-mediated depletion of NMI, decreased Pol I transcription in vivo, whereas overexpression of NMI augmented pre-rRNA synthesis. In vitro, recombinant NMI activated Pol I transcription, and antibodies to NMI or actin inhibited Pol I transcription both on naked DNA and pre-assembled chromatin templates. Whereas actin associated with Pol I, NMI bound to Pol I through the transcription-initiation factor TIF-IA. The association with Pol I requires phosphorylation of TIF-IA at Ser 649 by RSK kinase, indicating a role for NMI in the growth-dependent regulation of rRNA synthesis.


Nature Cell Biology | 2004

Actin is part of pre-initiation complexes and is necessary for transcription by RNA polymerase II

Wilma A. Hofmann; Ljuba Stojiljkovic; Beata Fuchsova; Gabriela M. Vargas; Evangelos Mavrommatis; Vlada V. Philimonenko; Katarína Kyselá; James A. Goodrich; James L. Lessard; Thomas J. Hope; Pavel Hozák; Primal de Lanerolle

Actin is abundant in the nucleus and has been implicated in transcription; however, the nature of this involvement has not been established. Here we demonstrate that β-actin is critically involved in transcription because antibodies directed against β-actin, but not muscle actin, inhibited transcription in vivo and in vitro. Chromatin immunoprecipitation assays demonstrated the recruitment of actin to the promoter region of the interferon-γ-inducible MHC2TA gene as well as the interferon-α-inducible G1P3 gene. Further investigation revealed that actin and RNA polymerase II co-localize in vivo and also co-purify. We employed an in vitro system with purified nuclear components to demonstrate that antibodies to β-actin block the initiation of transcription. This assay also demonstrates that β-actin stimulates transcription by RNA polymerase II. Finally, DNA-binding experiments established the presence of β-actin in pre-initiation complexes and also showed that the depletion of actin prevented the formation of pre-initiation complexes. Together, these data suggest a fundamental role for actin in the initiation of transcription by RNA polymerase II.


Molecular and Cellular Biology | 2001

Activated PAK4 regulates cell adhesion and anchorage-independent growth

Jian Qu; Marta S. Cammarano; Qing Shi; Kenneth C. Ha; Primal de Lanerolle; Audrey Minden

ABSTRACT The serine/threonine kinase PAK4 is an effector molecule for the Rho GTPase Cdc42. PAK4 differs from other members of the PAK family in both sequence and function. Previously we have shown that an important function of this kinase is to mediate the induction of filopodia in response to activated Cdc42. Since previous characterization of PAK4 was carried out only with the wild-type kinase, we have generated a constitutively active mutant of the kinase to determine whether it has other functions. Expression of activated PAK4 in fibroblasts led to a transient induction of filopodia, which is consistent with its role as an effector for Cdc42. In addition, use of the activated mutant revealed a number of other important functions of this kinase that were not revealed by studying the wild-type kinase. For example, activated PAK4 led to the dissolution of stress fibers and loss of focal adhesions. Consequently, cells expressing activated PAK4 had a defect in cell spreading onto fibronectin-coated surfaces. Most importantly, fibroblasts expressing activated PAK4 had a morphology that was characteristic of oncogenic transformation. These cells were anchorage independent and formed colonies in soft agar, similar to what has been observed previously in cells expressing activated Cdc42. Consistent with this, dominant-negative PAK4 mutants inhibited focus formation by oncogenic Dbl, an exchange factor for Rho family GTPases. These results provide the first demonstration that a PAK family member can transform cells and indicate that PAK4 may play an essential role in oncogenic transformation by the GTPases. We propose that the morphological changes and changes in cell adhesion induced by PAK4 may play a direct role in oncogenic transformation by Rho family GTPases and their exchange factors.


Circulation Research | 2002

Myosin Light Chain Phosphorylation in Neutrophil-Stimulated Coronary Microvascular Leakage

Sarah Y. Yuan; Mack H. Wu; Elena E. Ustinova; Mingzhang Guo; John H. Tinsley; Primal de Lanerolle; Wenjuan Xu

Neutrophil-induced coronary microvascular leakage represents an important pathophysiological consequence of ischemic and inflammatory heart diseases. The precise mechanism by which neutrophils regulate endothelial barrier function remains to be established. The aim of this study was to examine the microvascular endothelial response to neutrophil activation with a focus on myosin light chain kinase (MLCK)-mediated myosin light chain (MLC) phosphorylation, a regulatory process that controls cell contraction. The apparent permeability coefficient of albumin (Pa) was measured in intact isolated porcine coronary venules. Incubation of the vessels with C5a-activated neutrophils induced a time- and concentration-dependent increase in Pa. The hyperpermeability response was significantly attenuated during inhibition of endothelial MLC phosphorylation with the selective MLCK inhibitor ML-7 and transfection of a specific MLCK-inhibiting peptide. In contrast, transfection of constitutively active MLCK elevated Pa, which was abolished by ML-7. In addition to the vessel study, albumin transendothelial flux was measured in cultured bovine coronary venular endothelial monolayers, which displayed a hyperpermeability response to neutrophils and MLCK in a pattern similar to that in venules. Importantly, neutrophil stimulation caused MLC phosphorylation in endothelial cells in a time course closely correlated with that of the hyperpermeability response. Consistently, the MLCK inhibitors abolished neutrophil-induced MLC phosphorylation. Furthermore, immunohistochemical observation of neutrophil-stimulated endothelial cells revealed an increased staining for phosphorylated MLC in association with contractile stress fiber formation and intercellular gap development. Taken together, the results suggest that endothelial MLCK activation and MLC phosphorylation play an important role in mediating endothelial barrier dysfunction during neutrophil activation.


Nature Cell Biology | 2011

Nuclear actin and myosins: Life without filaments

Primal de Lanerolle; Leonid A. Serebryannyy

Actin and myosin are major components of the cell cytoskeleton, with structural and regulatory functions that affect many essential cellular processes. Although they were traditionally thought to function only in the cytoplasm, it is now well accepted that actin and multiple myosins are found in the nucleus. Increasing evidence on their functional roles has highlighted the importance of these proteins in the nuclear compartment.


American Journal of Physiology-cell Physiology | 1998

Regulation of cytoskeletal mechanics and cell growth by myosin light chain phosphorylation

Shuang Cai; Lidija Pestic-Dragovich; Martha E. O’Donnell; Ning Wang; Donald E. Ingber; Elliot L. Elson; Primal de Lanerolle

The role of myosin light chain phosphorylation in regulating the mechanical properties of the cytoskeleton was studied in NIH/3T3 fibroblasts expressing a truncated, constitutively active form of smooth muscle myosin light chain kinase (tMK). Cytoskeletal stiffness determined by quantifying the force required to indent the apical surface of adherent cells showed that stiffness was increased twofold in tMK cells compared with control cells expressing the empty plasmid (Neo cells). Cytoskeletal stiffness quantified using magnetic twisting cytometry showed an approximately 1.5-fold increase in stiffness in tMK cells compared with Neo cells. Electronic volume measurements on cells in suspension revealed that tMK cells had a smaller volume and are more resistant to osmotic swelling than Neo cells. tMK cells also have smaller nuclei, and activation of mitogen-activated protein kinase (MAP kinase) and translocation of MAP kinase to the nucleus are slower in tMK cells than in control cells. In tMK cells, there is also less bromodeoxyuridine incorporation, and the doubling time is increased. These data demonstrate that increased myosin light chain phosphorylation correlates with increased cytoskeletal stiffness and suggest that changing the mechanical characteristics of the cytoskeleton alters the intracellular signaling pathways that regulate cell growth and division.The role of myosin light chain phosphorylation in regulating the mechanical properties of the cytoskeleton was studied in NIH/3T3 fibroblasts expressing a truncated, constitutively active form of smooth muscle myosin light chain kinase (tMK). Cytoskeletal stiffness determined by quantifying the force required to indent the apical surface of adherent cells showed that stiffness was increased twofold in tMK cells compared with control cells expressing the empty plasmid (Neo cells). Cytoskeletal stiffness quantified using magnetic twisting cytometry showed an ∼1.5-fold increase in stiffness in tMK cells compared with Neo cells. Electronic volume measurements on cells in suspension revealed that tMK cells had a smaller volume and are more resistant to osmotic swelling than Neo cells. tMK cells also have smaller nuclei, and activation of mitogen-activated protein kinase (MAP kinase) and translocation of MAP kinase to the nucleus are slower in tMK cells than in control cells. In tMK cells, there is also less bromodeoxyuridine incorporation, and the doubling time is increased. These data demonstrate that increased myosin light chain phosphorylation correlates with increased cytoskeletal stiffness and suggest that changing the mechanical characteristics of the cytoskeleton alters the intracellular signaling pathways that regulate cell growth and division.


Journal of Cell Biology | 2009

SUMOylation of nuclear actin

Wilma A. Hofmann; Alessandro Arduini; Samantha M. Nicol; Carlos J. Camacho; James L. Lessard; Frances V. Fuller-Pace; Primal de Lanerolle

Actin, a major component of the cytoplasm, is also abundant in the nucleus. Nuclear actin is involved in a variety of nuclear processes including transcription, chromatin remodeling, and intranuclear transport. Nevertheless, the regulation of nuclear actin by posttranslational modifications has not been investigated. We now show that nuclear actin is modified by SUMO2 and SUMO3 and that computational modeling and site-directed mutagenesis identified K68 and K284 as critical sites for SUMOylating actin. We also present a model for the actin–SUMO complex and show that SUMOylation is required for the nuclear localization of actin.


PLOS ONE | 2011

VEGFR2 Translocates to the Nucleus to Regulate Its Own Transcription

Inês Domingues; José Rino; Jeroen Demmers; Primal de Lanerolle; Susana Constantino Rosa Santos

Vascular Endothelial Growth Factor Receptor-2 (VEGFR2) is the major mediator of the angiogenic effects of VEGF. In addition to its well known role as a membrane receptor that activates multiple signaling pathways, VEGFR2 also has a nuclear localization. However, what VEGFR2 does in the nucleus is still unknown. In the present report we show that, in endothelial cells, nuclear VEGFR2 interacts with several nuclear proteins, including the Sp1, a transcription factor that has been implicated in the regulation of genes needed for angiogenesis. By in vivo chromatin immunoprecipitation (ChIP) assays, we found that VEGFR2 binds to the Sp1-responsive region of the VEGFR2 proximal promoter. These results were confirmed by EMSA assays, using the same region of the VEGFR2 promoter. Importantly, we show that the VEGFR2 DNA binding is directly linked to the transcriptional activation of the VEGFR2 promoter. By reporter assays, we found that the region between -300/-116 relative to the transcription start site is essential to confer VEGFR2-dependent transcriptional activity. It was previously described that nuclear translocation of the VEGFR2 is dependent on its activation by VEGF. In agreement, we observed that the binding of VEGFR2 to DNA requires VEGF activation, being blocked by Bevacizumab and Sunitinib, two anti-angiogenic agents that inhibit VEGFR2 activation. Our findings demonstrate a new mechanism by which VEGFR2 activates its own promoter that could be involved in amplifying the angiogenic response.


Molecular and Cellular Biology | 2005

Inhibiting Myosin Light Chain Kinase Induces Apoptosis In Vitro and In Vivo

Fabeha Fazal; Lianzhi Gu; Ivanna Ihnatovych; YooJeong Han; Wen Yang Hu; Nenad Antic; Fernando Carreira; James F. Blomquist; Thomas J. Hope; David S. Ucker; Primal de Lanerolle

ABSTRACT Previous short-term studies have correlated an increase in the phosphorylation of the 20-kDa light chain of myosin II (MLC20) with blebbing in apoptotic cells. We have found that this increase in MLC20 phosphorylation is rapidly followed by MLC20 dephosphorylation when cells are stimulated with various apoptotic agents. MLC20 dephosphorylation is not a consequence of apoptosis because MLC20 dephosphorylation precedes caspase activation when cells are stimulated with a proapoptotic agent or when myosin light chain kinase (MLCK) is inhibited pharmacologically or by microinjecting an inhibitory antibody to MLCK. Moreover, blocking caspase activation increased cell survival when MLCK is inhibited or when cells are treated with tumor necrosis factor alpha. Depolymerizing actin filaments or detaching cells, processes that destabilize the cytoskeleton, or inhibiting myosin ATPase activity also resulted in MLC20 dephosphorylation and cell death. In vivo experiments showed that inhibiting MLCK increased the number of apoptotic cells and retarded the growth of mammary cancer cells in mice. Thus, MLC20 dephosphorylation occurs during physiological cell death and prolonged MLC20 dephosphorylation can trigger apoptosis.


Proceedings of the National Academy of Sciences of the United States of America | 2011

Herpesviral replication compartments move and coalesce at nuclear speckles to enhance export of viral late mRNA

Lynne Chang; William J. Godinez; Il Han Kim; Marco Tektonidis; Primal de Lanerolle; Roland Eils; Karl Rohr; David M. Knipe

The role of the intranuclear movement of chromatin in gene expression is not well-understood. Herpes simplex virus forms replication compartments (RCs) in infected cell nuclei as sites of viral DNA replication and late gene transcription. These structures develop from small compartments that grow in size, move, and coalesce. Quantitative analysis of RC trajectories, derived from 4D images, shows that most RCs move by directed motion. Directed movement is impaired in the presence of actin and myosin inhibitors as well as a transcription inhibitor. In addition, RCs coalesce at and reorganize nuclear speckles. Lastly, distinct effects of actin and myosin inhibitors on viral gene expression suggest that RC movement is not required for transcription, but rather, movement results in the bridging of transcriptionally active RCs with nuclear speckles to form structures that enhance export of viral late mRNAs.

Collaboration


Dive into the Primal de Lanerolle's collaboration.

Top Co-Authors

Avatar

Wilma A. Hofmann

State University of New York System

View shared research outputs
Top Co-Authors

Avatar

Leonid A. Serebryannyy

University of Illinois at Chicago

View shared research outputs
Top Co-Authors

Avatar

Wen Yang Hu

University of Illinois at Chicago

View shared research outputs
Top Co-Authors

Avatar

Grzegorz Nowak

University of Illinois at Chicago

View shared research outputs
Top Co-Authors

Avatar

Mariann R. Piano

University of Illinois at Chicago

View shared research outputs
Top Co-Authors

Avatar

Richard J. Paul

University of Cincinnati Academic Health Center

View shared research outputs
Top Co-Authors

Avatar

Yoo Jeong Han

University of Illinois at Chicago

View shared research outputs
Top Co-Authors

Avatar

Beata Fuchsova

University of Illinois at Chicago

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Christina M. Cruz

University of Illinois at Chicago

View shared research outputs
Researchain Logo
Decentralizing Knowledge