Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Primavera Borelli is active.

Publication


Featured researches published by Primavera Borelli.


Inflammation | 2013

A high-fat diet increases IL-1, IL-6, and TNF-α production by increasing NF-κB and attenuating PPAR-γ expression in bone marrow mesenchymal stem cells.

Mayara Cortez; Luciana Simão do Carmo; Marcelo Macedo Rogero; Primavera Borelli; Ricardo Ambrósio Fock

It is well established that a high-fat diet (HFD) can lead to overweight and ultimately to obesity, as well as promoting low-grade chronic inflammation associated with increased levels of such mediators as TNF-α, IL-1, and IL-6. Bone marrow mesenchymal stem cells (MSCs), which are involved in hematopoietic niches and microenvironments, can be affected by these cytokines, resulting in induction of NF-κB and inhibition of PPAR-γ. Because this phenomenon could ultimately lead to suppression of bone marrow adipogenesis, we set out to investigate the effect of an HFD on the expression of PPAR-γ and NF-κB, as well as the production of IL-1, IL-6, and TNF-α in MSCs. Two-month-old male Wistar rats were fed a HFD diet and evaluated by means of leukograms and myelograms along with blood total cholesterol, triglyceride, and C-reactive protein levels. MSCs were isolated, and PPAR-γ and NF-κB were quantified, as well as IL-1, IL-6, and TNF-α production. Animals that were fed a HFD showed higher levels of blood total cholesterol, triglycerides, and C-reactive protein with leukocytosis and bone marrow hyperplasia. MSCs from HFD animals showed increased production of IL-1, IL-6, and TNF-α and increased NF-κB and reduced PPAR-γ expression. Therefore, ingestion of an HFD induces alterations in MSCs that may influence modulation of hematopoiesis.


Neuroimmunomodulation | 2004

Regulation of allergic lung inflammation in rats: interaction between estradiol and corticosterone.

Ana Paula Ligeiro de Oliveira; Ricardo Martins Oliveira-Filho; Zilma Lúcia da Silva; Primavera Borelli; Wothan Tavares de Lima

Objective: One third of asthmatic women report a decreased expiratory peak flow during menses. Since asthma is characterized by lung inflammation and bronchopulmonary hyperresponsiveness, we investigated the role played by estradiol in allergic lung inflammation. Methods: Cell migration to the lungs of allergic female rats subjected to oophorectomy (OVx) was compared to that in their sham-operated (sham) control counterparts. Seven days after OVx or sham operation, the rats were sensitized intraperitoneally with ovalbumin (OA, 1 mg/kg) suspended in aluminum hydroxide (day 0). At day 7, a subcutaneous booster of OA was performed and an aerosolized OA challenge was carried out at day 14. One day later (day 15), the rats were killed and cell counts were performed in bronchoalveolar lavages (BAL), in peripheral blood and in bone marrow lavages. Results: After the antigen challenge, OVx rats showed a significant decrease in cell migration to the lung as compared to sham-operated rats. Differential analyses of BAL revealed a reduced number of eosinophils, mononuclear cells and neutrophils. In contrast, in bone marrow as well as in the peripheral blood the numbers of eosinophils, mononuclear cells and neutrophils were increased relative to sham controls. Mast cell numbers were similar in both groups. The estradiol receptor antagonist tamoxifen decreased the allergic lung inflammation in intact rats down to levels similar to those found in untreated OVx rats. In contrast, 17β-estradiol replacement in OVx rats reestablished the allergic lung inflammation, as observed by an elevated number of eosinophils, mononuclear cells and neutrophils recovered in BAL. Similarly, an elevated number of inflammatory cells were quantified in BAL from allergic OVx rats when corticosterone effects were blocked with metyrapone or RU-486. Conclusion: Our results suggest that estradiol has proinflammatory actions on the allergic lung response, and these actions seem to be mediated, at least in part, by endogenous glucocorticoids.


Microbes and Infection | 2000

Acute Trypanosoma cruzi infection is associated with anemia, thrombocytopenia, leukopenia, and bone marrow hypoplasia: reversal by nifurtimox treatment

Maria C.G Marcondes; Primavera Borelli; Nobuko Yoshida; Momtchilo Russo

In the present work we show that acute infection of C3H mice with the CL strain of Trypanosoma cruzi is characterized by an exponential growth of parasites and high mortality accompanied by anemia, thrombocytopenia, leukopenia, and bone marrow hypoplasia. Administration of nifurtimox, a trypanocydal drug currently in clinical use at different days postinfection, modulates parasitemia and prevents mortality. More importantly, none of blood and bone marrow alterations were observed in nifurtimox-treated animals when treatment was initiated early in infection, one or seven days postinoculation. The bone marrow alterations were characterized by a decrease in the total number cells as well in the number of megakaryoblasts and erythroblasts. Transfer experiments of bone marrow cells from infected mice to noninfected lethally irradiated recipients revealed a poor marrow-repopulating activity. The colony forming units-spleen assay confirmed the depression of committed clonal progenitors cells and revealed a decreased number of granulocyte/macrophage, megacariocyte and erythrocyte colonies. In summary, this is the first report showing that acute T. cruzi infection results in profound alterations of the hematopoietic system and that these alterations can be prevented by nifurtimox treatment.


British Journal of Nutrition | 2007

Reduction of erythroid progenitors in protein–energy malnutrition

Primavera Borelli; S.L. Blatt; Juliana Pereira; Beatriz B. Maurino; Maristela Tsujita; Ana Cristina de Souza; José Guilherme Xavier; Ricardo Ambrósio Fock

Protein-energy malnutrition is a syndrome in which anaemia together with multivitamin and mineral deficiency may be present. The pathophysiological mechanisms involved have not, however, yet been completely elucidated. The aim of the present study was to evaluate the pathophysiological processes that occur in this anaemia in animals that were submitted to protein-energy malnutrition, in particular with respect to Fe concentration and the proliferative activity of haemopoietic cells. For this, histological, histochemical, cell culture and immunophenotyping techniques were used. Two-month-old male Swiss mice were submitted to protein-energy malnutrition with a low-protein diet (20 g/kg) compared with control diet (400 g/kg). When the experimental group had attained a 20 % loss of their original body weight, the animals from both groups received, intravenously, 20 IU erythropoietin every other day for 14 d. Malnourished animals showed a decrease in red blood cells, Hb concentration and reticulocytopenia, as well as severe bone marrow and splenic atrophy. The results for serum Fe, total Fe-binding capacity, transferrin and erythropoietin in malnourished animals were no different from those of the control animals. Fe reserves in the spleen, liver and bone marrow were found to be greater in the malnourished animals. The mixed colony-forming unit assays revealed a smaller production of granulocyte-macrophage colony-forming units, erythroid burst-forming units, erythroid colony-forming units and CD45, CD117, CD119 and CD71 expression in the bone marrow and spleen cells of malnourished animals. These findings suggest that, in this protein-energy malnutrition model, anaemia is not caused by Fe deficiency or erythropoietin deficiency, but is a result of ineffective erythropoiesis.


Nutrition Research | 1995

Protein malnutrition: Effect on myeloid cell production and mobilization into inflammatory reactions in mice

Primavera Borelli; Mario Mariano; Radovan Borojevic

The effect of a low protein diet on mobilization of inflammatory cells into injured tissues was studied using the experimental murine model of subcutaneous glass implants. We observed an impaired mobilization of mononuclear and polymorphonuclear phagocytes into the injury site in undernourished mice, reflecting apparently a low availability of inflammatory cells at the systemic level. Analysis of bone marrow and blood leukograms has shown that the mobilization of blood leukocytes into the lesions was not compensated by their production and release from the bone marrow. Cultures of bone marrow cells in the presence of plasma obtained from undernourished animals showed that the stimulatory factors for proliferation of early precursors of myeloid lineages were present in normal or increased levels. The full maturation and release of myeloid cell lineages was delayed. The impaired production of myeloid cells in undernourished animals does not appear to be a consequence of a general insufficient protein availability, but reflects specific modifications of the stimulatory factors that control proliferation, differentiation and release of leukocytes from the bone marrow.


Nutrition | 2010

Study of lymphocyte subpopulations in bone marrow in a model of protein-energy malnutrition

Ricardo Ambrósio Fock; S.L. Blatt; Beatriz Beutler; Juliana Pereira; Maristela Tsujita; Francisco Erivaldo Vidal de Barros; Primavera Borelli

OBJECTIVE Protein-energy malnutrition (PEM) is an important public health problem affecting millions of people worldwide. Hematopoietic tissue requires a high nutrient supply, and a reduction in leukocytes, especially lymphocytes, suggests that some nutritional deficiencies might be altering bone marrow function and decreasing its ability to produce lymphocytes. In this study, we evaluated the effect that PEM has on lymphocyte subtypes and the cell cycle of CD5(+) cells. METHODS Swiss mice were subjected to PEM using a low-protein diet containing 4% protein. When the experimental group had lost about 20% of their original body weight, we collected blood and bone marrow cells and evaluated the hemogram, the myelogram, bone marrow lymphoid markers using flow cytometry, and the cell cycle in CD5(+) bone marrow. RESULTS Malnourished animals presented anemia, reticulocytopenia, and leukopenia with lymphopenia. The bone marrow was hypocellular, and flow cytometric analyses of bone marrow cells showed cells that were CD45(+) (91.2%), CD2(+) (84.9%), CD5(+) (37.3%), CD3(+) (23.5%), CD19(+) (43.3%), CD22(+) (34.7%), CD19(+)/CD2(+) (51.2%), CD19(+)/CD3(+) (24.0%), CD19(+)/CD5(+) (13.2%), CD22(+)/CD2(+) (40.1%), CD22(+)/CD3(+) (30.3%), and CD22(+)/CD5(+) (1.1%) in malnourished animals and CD45(+) (97.5%), CD2(+) (42.9%), CD5(+) (91.5%), CD3(+) (92.0%), CD19(+) (52.0%), CD22(+) (75.6%), CD19(+)/CD2(+) (62.0%), CD19(+)/CD3(+) (55.4%), CD19(+)/CD5(+) (6.7%), CD22(+)/CD2(+) (70.3%), CD22(+)/CD3(+) (55.9%), and CD22(+)/CD5(+) (8.4%) in control animals. Malnourished animals also presented more CD5(+) cells in the G0 phase of cell cycle development. CONCLUSION Malnourished animals presented bone marrow hypoplasia, maturation interruption, prominent lymphopenia with depletion in the lymphoid lineage, and changes in cellular development. We suggest that these changes are some of the primary causes of lymphopenia in cases of PEM and partly explain the increase in susceptibility to infections found in malnourished individuals.


Brazilian Journal of Medical and Biological Research | 2009

Protein-energy malnutrition halts hemopoietic progenitor cells in the G0/G1 cell cycle stage, thereby altering cell production rates

Primavera Borelli; Francisco Erivaldo Vidal de Barros; K. Nakajima; S.L. Blatt; Bruce Beutler; Júlio Cesar Rodrigues Pereira; Maristela Tsujita; G.M. Favero; Ricardo Ambrósio Fock

Protein energy malnutrition (PEM) is a syndrome that often results in immunodeficiency coupled with pancytopenia. Hemopoietic tissue requires a high nutrient supply and the proliferation, differentiation and maturation of cells occur in a constant and balanced manner, sensitive to the demands of specific cell lineages and dependent on the stem cell population. In the present study, we evaluated the effect of PEM on some aspects of hemopoiesis, analyzing the cell cycle of bone marrow cells and the percentage of progenitor cells in the bone marrow. Two-month-old male Swiss mice (N = 7-9 per group) were submitted to PEM with a low-protein diet (4%) or were fed a control diet (20% protein) ad libitum. When the experimental group had lost about 20% of their original body weight after 14 days, we collected blood and bone marrow cells to determine the percentage of progenitor cells and the number of cells in each phase of the cell cycle. Animals of both groups were stimulated with 5-fluorouracil. Blood analysis, bone marrow cell composition and cell cycle evaluation was performed after 10 days. Malnourished animals presented anemia, reticulocytopenia and leukopenia. Their bone marrow was hypocellular and depleted of progenitor cells. Malnourished animals also presented more cells than normal in phases G0 and G1 of the cell cycle. Thus, we conclude that PEM leads to the depletion of progenitor hemopoietic populations and changes in cellular development. We suggest that these changes are some of the primary causes of pancytopenia in cases of PEM.


Brazilian Journal of Medical and Biological Research | 2000

Alterations in proteins of bone marrow extracellular matrix in undernourished mice

C.L. Vituri; Marcio Alvarez-Silva; Andréa Gonçalves Trentin; Primavera Borelli

The objective of the present study was to determine the effect of protein malnutrition on the glycoprotein content of bone marrow extracellular matrix (ECM). Two-month-old male Swiss mice were submitted to protein malnutrition with a low-protein diet containing 4% casein as compared to 20% casein in the control diet. When the experimental group had attained a 20% loss of their original body weight, we extracted the ECM proteins from bone marrow with PBS buffer, and analyzed ECM samples by SDS-PAGE (7.5%) and ECL Western blotting. Quantitative differences were observed between control and experimental groups. Bone marrow ECM from undernourished mice had greater amounts of extractable fibronectin (1.6-fold increase) and laminin (4.8-fold increase) when compared to the control group. These results suggest an association between fluctuations in the composition of the hematopoietic microenvironment and altered hematopoiesis observed in undernourished mice.


Journal of Ethnopharmacology | 2011

Acute, subacute toxicity and mutagenic effects of anacardic acids from cashew (Anacardium occidentale Linn.) in mice

Ana Laura N. Carvalho; Raquel Annoni; Paula Regina Pereira Silva; Primavera Borelli; Ricardo Ambrósio Fock; Maria Teresa Salles Trevisan; Thais Mauad

AIM OF THE STUDY Anacardium occidentale Linn. (cashew) is a Brazilian plant that is usually consumed in natura and is used in folk medicine. Anacardic acids (AAs) in the cashew nut shell liquid are biologically active as gastroprotectors, inhibitors of the activity of various deleterious enzymes, antitumor agents and antioxidants. Yet, there are no reports of toxicity testing to guarantee their use in vivo models. MATERIALS AND METHODS We evaluated AAs biosafety by measuring the acute, subacute and mutagenic effects of AAs administration in BALB/c mice. In acute tests, BALB/c mice received a single oral dose of 2000 mg/kg, whereas animals in subacute tests received 300, 600 and 1000 mg/kg for 30 days. Hematological, biochemical and histological analyses were performed in all animals. Mutagenicity was measured with the acute micronucleus test 24h after oral administration of 250 mg/kg AAs. RESULTS Our results showed that the AAs acute minimum lethal dose in BALB/c mice is higher than 2000 mg/kg since this concentration did not produce any symptoms. In subacute tests, females which received the highest doses (600 or 1000 mg/kg) were more susceptible, which was seen by slightly decreased hematocrit and hemoglobin levels coupled with a moderate increase in urea. Anacardic acids did not produce any mutagenic effects. CONCLUSIONS The data indicate that doses less than 300 mg/kg did not produce biochemical and hematological alterations in BALB/c mice. Additional studies must be conducted to investigate the pharmacological potential of this natural substance in order to ensure their safe use in vivo.


PLOS ONE | 2013

Protein malnutrition induces bone marrow mesenchymal stem cells commitment to adipogenic differentiation leading to hematopoietic failure.

Mayara Caldas Ramos Cunha; Fabiana da Silva Lima; Marco Aurélio Ramirez Vinolo; Araceli Hastreiter; Rui Curi; Primavera Borelli; Ricardo Ambrósio Fock

Protein malnutrition (PM) results in pathological changes that are associated with peripheral leukopenia, bone marrow (BM) hypoplasia and alterations in the BM microenvironment leading to hematopoietic failure; however, the mechanisms involved are poorly understood. In this context, the BM mesenchymal stem cells (MSCs) are cells intimately related to the formation of the BM microenvironment, and their differentiation into adipocytes is important because adipocytes are cells that have the capability to negatively modulate hematopoiesis. Two-month-old male Balb/c mice were subjected to protein-energy malnutrition with a low-protein diet containing 2% protein, whereas control animals were fed a diet containing 12% protein. The hematopoietic parameters and the expression of CD45 and CD117 positive cells in the BM were evaluated. MSCs were isolated from BM, and their capability to produce SCF, IL-3, G-CSF and GM-CSF were analyzed. The expression of PPAR-γ and C/EBP-α as well as the expression of PPAR-γ and SREBP mRNAs were evaluated in MSCs together with their capability to differentiate into adipocytes in vitro. The malnourished animals had anemia and leukopenia as well as spleen and bone marrow hypoplasia and a reduction in the expression of CD45 and CD117 positive cells from BM. The MSCs of the malnourished mice presented an increased capability to produce SCF and reduced production of G-CSF and GM-CSF. The MSCs from the malnourished animals showed increased expression of PPAR-γ protein and PPAR-γ mRNA associated with an increased capability to differentiate into adipocytes. The alterations found in the malnourished animals allowed us to conclude that malnutrition committed MSC differentiation leading to adipocyte decision and compromised their capacity for cytokine production, contributing to an impaired hematopoietic microenvironment and inducing the bone marrow failure commonly observed in protein malnutrition states.

Collaboration


Dive into the Primavera Borelli's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge